Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Swayne is active.

Publication


Featured researches published by David E. Swayne.


Journal of Virology | 2005

Pathogenicity of Influenza Viruses with Genes from the 1918 Pandemic Virus: Functional Roles of Alveolar Macrophages and Neutrophils in Limiting Virus Replication and Mortality in Mice

Terrence M. Tumpey; Adolfo García-Sastre; Jeffery K. Taubenberger; Peter Palese; David E. Swayne; Mary J. Pantin-Jackwood; Stacey Schultz-Cherry; Alicia Solórzano; Nico van Rooijen; Jacqueline M. Katz; Christopher F. Basler

ABSTRACT The Spanish influenza pandemic of 1918 to 1919 swept the globe and resulted in the deaths of at least 20 million people. The basis of the pulmonary damage and high lethality caused by the 1918 H1N1 influenza virus remains largely unknown. Recombinant influenza viruses bearing the 1918 influenza virus hemagglutinin (HA) and neuraminidase (NA) glycoproteins were rescued in the genetic background of the human A/Texas/36/91 (H1N1) (1918 HA/NA:Tx/91) virus. Pathogenesis experiments revealed that the 1918 HA/NA:Tx/91 virus was lethal for BALB/c mice without the prior adaptation that is usually required for human influenza A H1N1 viruses. The increased mortality of 1918 HA/NA:Tx/91-infected mice was accompanied by (i) increased (>200-fold) viral replication, (ii) greater influx of neutrophils into the lung, (iii) increased numbers of alveolar macrophages (AMs), and (iv) increased protein expression of cytokines and chemokines in lung tissues compared with the levels seen for control Tx/91 virus-infected mice. Because pathological changes in AMs and neutrophil migration correlated with lung inflammation, we assessed the role of these cells in the pathogenesis associated with 1918 HA/NA:Tx/91 virus infection. Neutrophil and/or AM depletion initiated 3 or 5 days after infection did not have a significant effect on the disease outcome following a lethal 1918 HA/NA:Tx/91 virus infection. By contrast, depletion of these cells before a sublethal infection with 1918 HA/NA:Tx/91 virus resulted in uncontrolled virus growth and mortality in mice. In addition, neutrophil and/or AM depletion was associated with decreased expression of cytokines and chemokines. These results indicate that a human influenza H1N1 virus possessing the 1918 HA and NA glycoproteins can induce severe lung inflammation consisting of AMs and neutrophils, which play a role in controlling the replication and spread of 1918 HA/NA:Tx/91 virus after intranasal infection of mice.


PLOS Pathogens | 2008

The Evolutionary Genetics and Emergence of Avian Influenza Viruses in Wild Birds

Vivien G. Dugan; Rubing Chen; David J. Spiro; Naomi Sengamalay; Jennifer Zaborsky; Elodie Ghedin; Jacqueline M. Nolting; David E. Swayne; Jonathan A. Runstadler; G. M. Happ; Dennis A. Senne; Ruixue Wang; Richard D. Slemons; Edward C. Holmes; Jeffery K. Taubenberger

We surveyed the genetic diversity among avian influenza virus (AIV) in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA) and neuraminidase (NA) subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient “genome constellations,” continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses.


PLOS Medicine | 2006

Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets

Amorsolo L. Suguitan; Josephine M. McAuliffe; Kimberly Mills; Hong Jin; Greg Duke; Bin Lu; Catherine J. Luke; Brian R. Murphy; David E. Swayne; George Kemble; Kanta Subbarao

Background Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. Methods and Findings Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. Conclusions The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans.


Journal of Virology | 2006

Protection of Mice and Poultry from Lethal H5N1 Avian Influenza Virus through Adenovirus-Based Immunization

Wentao Gao; Adam C. Soloff; Xiuhua Lu; Angela Montecalvo; Doan C. Nguyen; Yumi Matsuoka; Paul D. Robbins; David E. Swayne; Ruben O. Donis; Jacqueline M. Katz; Simon M. Barratt-Boyes; Andrea Gambotto

ABSTRACT The recent emergence of highly pathogenic avian influenza virus (HPAI) strains in poultry and their subsequent transmission to humans in Southeast Asia have raised concerns about the potential pandemic spread of lethal disease. In this paper we describe the development and testing of an adenovirus-based influenza A virus vaccine directed against the hemagglutinin (HA) protein of the A/Vietnam/1203/2004 (H5N1) (VN/1203/04) strain isolated during the lethal human outbreak in Vietnam from 2003 to 2005. We expressed different portions of HA from a recombinant replication-incompetent adenoviral vector, achieving vaccine production within 36 days of acquiring the virus sequence. BALB/c mice were immunized with a prime-boost vaccine and exposed to a lethal intranasal dose of VN/1203/04 H5N1 virus 70 days later. Vaccination induced both HA-specific antibodies and cellular immunity likely to provide heterotypic immunity. Mice vaccinated with full-length HA were fully protected from challenge with VN/1203/04. We next evaluated the efficacy of adenovirus-based vaccination in domestic chickens, given the critical role of fowl species in the spread of HPAI worldwide. A single subcutaneous immunization completely protected chickens from an intranasal challenge 21 days later with VN/1203/04, which proved lethal to all control-vaccinated chickens within 2 days. These data indicate that the rapid production and subsequent administration of recombinant adenovirus-based vaccines to both birds and high-risk individuals in the face of an outbreak may serve to control the pandemic spread of lethal avian influenza.


Avian Diseases | 2007

Persistence of H5 and H7 Avian Influenza Viruses in Water

Justin D. Brown; David E. Swayne; Robert J. Cooper; Rachel E. Burns; David E. Stallknecht

Abstract Although fecal–oral transmission of avian influenza viruses (AIV) via contaminated water represents a recognized mechanism for transmission within wild waterfowl populations, little is known about viral persistence in this medium. In order to provide initial data on persistence of H5 and H7 AIVs in water, we evaluated eight wild-type low-pathogenicity H5 and H7 AIVs isolated from species representing the two major influenza reservoirs (Anseriformes and Charadriiformes). In addition, the persistence of two highly pathogenic avian influenza (HPAI) H5N1 viruses from Asia was examined to provide some insight into the potential for these viruses to be transmitted and maintained in the environments of wild bird populations. Viruses were tested at two temperatures (17 C and 28 C) and three salinity levels (0, 15, and 30 parts per thousand sea salt). The wild-type H5 and H7 AIV persistence data to date indicate the following: 1) that H5 and H7 AIVs can persist for extended periods of time in water, with a duration of infectivity comparable to AIVs of other subtypes; 2) that the persistence of H5 and H7 AIVs is inversely proportional to temperature and salinity of water; and 3) that a significant interaction exists between the effects of temperature and salinity on the persistence of AIV, with the effect of salinity more prominent at lower temperatures. Results from the two HPAI H5N1 viruses from Asia indicate that these viruses did not persist as long as the wild-type AIVs.


Veterinary Pathology | 2001

Pathobiology of A/Chicken/Hong Kong/220/97 (H5N1) Avian Influenza Virus in Seven Gallinaceous Species

L. E. L. Perkins; David E. Swayne

Direct bird-to-human transmission, with the production of severe respiratory disease and human mortality, is unique to the Hong Kong-origin H5N1 highly pathogenic avian influenza (HPAI) virus, which was originally isolated from a disease outbreak in chickens. The pathobiology of the A/chicken/Hong Kong/ 220/97 (H5N1) (HK/220) HPAI virus was investigated in chickens, turkeys, Japanese and Bobwhite quail, guinea fowl, pheasants, and partridges, where it produced 75-100% mortality within 10 days. Depression, mucoid diarrhea, and neurologic dysfunction were common clinical manifestations of disease. Grossly, the most severe and consistent lesions included splenomegaly, pulmonary edema and congestion, and hemorrhages in enteric lymphoid areas, on serosal surfaces, and in skeletal muscle. Histologic lesions were observed in multiple organs and were characterized by exudation, hemorrhage, necrosis, inflammation, or a combination of these features. The lung, heart, brain, spleen, and adrenal glands were the most consistently affected, and viral antigen was most often detected by immunohistochemistry in the parenchyma of these organs. The pathogenesis of infection with the HK/220 HPAI virus in these species was twofold. Early mortality occurring at 1-2 days postinoculation (DPI) corresponded to severe pulmonary edema and congestion and virus localization within the vascular endothelium. Mortality occurring after 2 DPI was related to systemic biochemical imbalance, multiorgan failure, or a combination of these factors. The pathobiologic features were analogous to those experimentally induced with other HPAI viruses in domestic poultry.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes

Christopher F. Basler; Ann H. Reid; Jody K. Dybing; Thomas A. Janczewski; Thomas G. Fanning; Hongyong Zheng; Mirella Salvatore; Michael L. Perdue; David E. Swayne; Adolfo García-Sastre; Peter Palese; Jeffery K. Taubenberger

The influenza A virus pandemic of 1918–1919 resulted in an estimated 20–40 million deaths worldwide. The hemagglutinin and neuraminidase sequences of the 1918 virus were previously determined. We here report the sequence of the A/Brevig Mission/1/18 (H1N1) virus nonstructural (NS) segment encoding two proteins, NS1 and nuclear export protein. Phylogenetically, these genes appear to be close to the common ancestor of subsequent human and classical swine strain NS genes. Recently, the influenza A virus NS1 protein was shown to be a type I IFN antagonist that plays an important role in viral pathogenesis. By using the recently developed technique of generating influenza A viruses entirely from cloned cDNAs, the hypothesis that the 1918 virus NS1 gene played a role in virulence was tested in a mouse model. In a BSL3+ laboratory, viruses were generated that possessed either the 1918 NS1 gene alone or the entire 1918 NS segment in a background of influenza A/WSN/33 (H1N1), a mouse-adapted virus derived from a human influenza strain first isolated in 1933. These 1918 NS viruses replicated well in tissue culture but were attenuated in mice as compared with the isogenic control viruses. This attenuation in mice may be related to the human origin of the 1918 NS1 gene. These results suggest that interaction of the NS1 protein with host-cell factors plays a significant role in viral pathogenesis.


Journal of Virology | 2005

Characterization of Highly Pathogenic H5N1 Avian Influenza A Viruses Isolated from South Korea

Chang-Won Lee; David L. Suarez; Terrence M. Tumpey; Haan-Woo Sung; Yong-Kuk Kwon; Youn-Jeong Lee; Jun-Gu Choi; Seong-Joon Joh; Min-Chul Kim; Eun-Kyoung Lee; Jong-Myung Park; Xiuhua Lu; Jacqueline M. Katz; Erica Spackman; David E. Swayne; Jae-Hong Kim

ABSTRACT An unprecedented outbreak of H5N1 highly pathogenic avian influenza (HPAI) has been reported for poultry in eight different Asian countries, including South Korea, since December 2003. A phylogenetic analysis of the eight viral genes showed that the H5N1 poultry isolates from South Korea were of avian origin and contained the hemagglutinin and neuraminidase genes of the A/goose/Guangdong/1/96 (Gs/Gd) lineage. The current H5N1 strains in Asia, including the Korean isolates, share a gene constellation similar to that of the Penfold Park, Hong Kong, isolates from late 2002 and contain some molecular markers that seem to have been fixed in the Gs/Gd lineage virus since 2001. However, despite genetic similarities among recent H5N1 isolates, the topology of the phylogenetic tree clearly differentiates the Korean isolates from the Vietnamese and Thai isolates which have been reported to infect humans. A representative Korean isolate was inoculated into mice, with no mortality and no virus being isolated from the brain, although high titers of virus were observed in the lungs. The same isolate, however, caused systemic infections in chickens and quail and killed all of the birds within 2 and 4 days of intranasal inoculation, respectively. This isolate also replicated in multiple organs and tissues of ducks and caused some mortality. However, lower virus titers were observed in all corresponding tissues of ducks than in chicken and quail tissues, and the histological lesions were restricted to the respiratory tract. This study characterizes the molecular and biological properties of the H5N1 HPAI viruses from South Korea and emphasizes the need for comparative analyses of the H5N1 isolates from different countries to help elucidate the risk of a human pandemic from the strains of H5N1 HPAI currently circulating in Asia.


Avian Diseases | 2002

Pathogenicity of a Hong Kong–Origin H5N1 Highly Pathogenic Avian Influenza Virus for Emus, Geese, Ducks, and Pigeons

Laura E. Leigh Perkins; David E. Swayne

SUMMARY. The H5N1 type A influenza viruses that emerged in Hong Kong in 1997 are a unique lineage of type A influenza viruses with the capacity to transmit directly from chickens to humans and produce significant disease and mortality in both of these hosts. The objective of this study was to ascertain the susceptibility of emus (Dramaius novaehollandiae), domestic geese (Anser anser domesticus), domestic ducks (Anas platyrhynchos), and pigeons (Columba livia) to intranasal (i.n.) inoculation with the A/chicken/Hong Kong/220/97 (H5N1) highly pathogenic avian influenza virus. No mortality occurred within 10 days postinoculation (DPI) in the four species investigated, and clinical disease, evident as neurologic dysfunction, was observed exclusively in emus and geese. Grossly, pancreatic mottling and splenomegaly were identified in these two species. In addition, the geese had cerebral malacia and thymic and bursal atrophy. Histologically, both the emus and geese developed pancreatitis, meningoencephalitis, and mild myocarditis. Influenza viral antigen was demonstrated in areas with histologic lesions up to 10 DPI in the geese. Virus was reisolated from oropharyngeal and cloacal swabs and from the lung, brain, and kidney of the emus and geese. Moderate splenomegaly was observed grossly in the ducks. Viral infection of the ducks was pneumotropic, as evidenced by mild inflammatory lesions in the respiratory tract and virus reisolation from oropharyngeal swabs and from a lung. Pigeons were resistant to HK/220 infection, lacking gross and histologic lesions, viral antigen, and reisolation of virus. These results imply that emus and geese are susceptible to i.n. inoculation with the HK/220 virus, whereas ducks and pigeons are more resistant. These latter two species probably played a minimal epidemiologic role in the perpetuation of the H5N1 Hong Kong–origin influenza viruses.


Journal of Virology | 2005

Isolation and Characterization of Avian Influenza Viruses, Including Highly Pathogenic H5N1, from Poultry in Live Bird Markets in Hanoi, Vietnam, in 2001

Doan C. Nguyen; Timothy M. Uyeki; Samadhan Jadhao; Taronna R. Maines; Michael Shaw; Yumiko Matsuoka; Catherine Smith; Thomas Rowe; Xiuhua Lu; Henrietta Hall; Xiyan Xu; Amanda Balish; Alexander Klimov; Terrence M. Tumpey; David E. Swayne; Lien P. T. Huynh; Ha K. Nghiem; Hanh Nguyen; Long T. Hoang; Nancy J. Cox; Jacqueline M. Katz

ABSTRACT Since 1997, outbreaks of highly pathogenic (HP) H5N1 and circulation of H9N2 viruses among domestic poultry in Asia have posed a threat to public health. To better understand the extent of transmission of avian influenza viruses (AIV) to humans in Asia, we conducted a cross-sectional virologic study in live bird markets (LBM) in Hanoi, Vietnam, in October 2001. Specimens from 189 birds and 18 environmental samples were collected at 10 LBM. Four influenza A viruses of the H4N6 (n = 1), H5N2 (n = 1), and H9N3 (n = 2) subtypes were isolated from healthy ducks for an isolation frequency of over 30% from this species. Two H5N1 viruses were isolated from healthy geese. The hemagglutinin (HA) genes of these H5N1 viruses possessed multiple basic amino acid motifs at the cleavage site, were HP for experimentally infected chickens, and were thus characterized as HP AIV. These HA genes shared high amino acid identities with genes of other H5N1 viruses isolated in Asia during this period, but they were genetically distinct from those of H5N1 viruses isolated from poultry and humans in Vietnam during the early 2004 outbreaks. These viruses were not highly virulent for experimentally infected ducks, mice, or ferrets. These results establish that HP H5N1 viruses with properties similar to viruses isolated in Hong Kong and mainland China circulated in Vietnam as early as 2001, suggest a common source for H5N1 viruses circulating in these Asian countries, and provide a framework to better understand the recent widespread emergence of HP H5N1 viruses in Asia.

Collaboration


Dive into the David E. Swayne's collaboration.

Top Co-Authors

Avatar

David L. Suarez

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Mary J. Pantin-Jackwood

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Erica Spackman

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong-Hun Lee

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Darrell R. Kapczynski

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Terrence M. Tumpey

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Kateri Bertran

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Jacqueline M. Katz

National Center for Immunization and Respiratory Diseases

View shared research outputs
Top Co-Authors

Avatar

Joan R. Beck

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge