Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Uehling is active.

Publication


Featured researches published by David E. Uehling.


ACS Medicinal Chemistry Letters | 2013

Discovery of Dabrafenib: A Selective Inhibitor of Raf Kinases with Antitumor Activity against B-Raf-Driven Tumors.

Tara Renae Rheault; John Stellwagen; George M. Adjabeng; Keith R. Hornberger; Kimberly G. Petrov; Alex G. Waterson; Scott Howard Dickerson; Robert A. Mook; Sylvie Laquerre; Alastair J. King; Olivia W. Rossanese; Marc R. Arnone; Kimberly N. Smitheman; Laurie S. Kane-Carson; Chao Han; Ganesh S. Moorthy; Katherine G. Moss; David E. Uehling

Hyperactive signaling of the MAP kinase pathway resulting from the constitutively active B-Raf(V600E) mutated enzyme has been observed in a number of human tumors, including melanomas. Herein we report the discovery and biological evaluation of GSK2118436, a selective inhibitor of Raf kinases with potent in vitro activity in oncogenic B-Raf-driven melanoma and colorectal carcinoma cells and robust in vivo antitumor and pharmacodynamic activity in mouse models of B-Raf(V600E) human melanoma. GSK2118436 was identified as a development candidate, and early clinical results have shown significant activity in patients with B-Raf mutant melanoma.


Proceedings of the National Academy of Sciences of the United States of America | 2008

6-Ethynylthieno[3,2-d]- and 6-ethynylthieno[2,3-d]pyrimidin-4-anilines as tunable covalent modifiers of ErbB kinases

Edgar R. Wood; Lisa M. Shewchuk; Byron Ellis; Perry S. Brignola; Ronald L. Brashear; Thomas R. Caferro; Scott Howard Dickerson; Hamilton D. Dickson; Kelly Horne Donaldson; Michael David Gaul; Robert J. Griffin; Anne M. Hassell; Barry R. Keith; Robert J. Mullin; Kimberly G. Petrov; Michael J. Reno; David W. Rusnak; Sarva M. Tadepalli; John C. Ulrich; Craig D. Wagner; Dana Vanderwall; Alex G. Waterson; Jon D. Williams; Wendy L. White; David E. Uehling

Analysis of the x-ray crystal structure of mono-substituted acetylenic thienopyrimidine 6 complexed with the ErbB family enzyme ErbB-4 revealed a covalent bond between the terminal carbon of the acetylene moiety and the sulfhydryl group of Cys-803 at the solvent interface. The identification of this covalent adduct suggested that acetylenic thienopyrimidine 6 and related analogs might also be capable of forming an analogous covalent adduct with EGFR, which has a conserved cysteine (797) near the ATP binding pocket. To test this hypothesis, we treated a truncated, catalytically competent form of EGFR (678–1020) with a structurally related propargylic amine (8). An investigation of the resulting complex by mass spectrometry revealed the formation of a covalent complex of thienopyrimidine 8 with Cys-797 of EGFR. This finding enabled us to readily assess the irreversibility of various inhibitors and also facilitated a structure–activity relationship understanding of the covalent modifying potential and biological activity of a series of acetylenic thienopyrimidine compounds with potent antitumor activity. Several ErbB family enzyme and cell potent 6-ethynyl thienopyrimidine kinase inhibitors were found to form covalent adducts with EGFR.


Bioorganic & Medicinal Chemistry Letters | 2009

Thienopyrimidine-based dual EGFR/ErbB-2 inhibitors.

Tara Renae Rheault; Thomas R. Caferro; Scott Howard Dickerson; Kelly Horne Donaldson; Michael David Gaul; Aaron S. Goetz; Robert J. Mullin; Octerloney B. McDonald; Kimberly G. Petrov; David W. Rusnak; Lisa M. Shewchuk; Glenn M. Spehar; Anne T. Truesdale; Dana E. Vanderwall; Edgar R. Wood; David E. Uehling

Two new series of potent and selective dual EGFR/ErbB-2 kinase inhibitors derived from novel thienopyrimidine cores have been identified. Isomeric thienopyrimidine cores were evaluated as isosteres for a 4-anilinoquinazoline core and several analogs containing the thieno[3,2-d]pyrimidine core showed anti-proliferative activity with IC(50) values less than 1 microM against human tumor cells in vitro.


Molecular Cancer Therapeutics | 2009

Abstract B88: A selective Raf kinase inhibitor induces cell death and tumor regression of human cancer cell lines encoding B‐RafV600E mutation

Sylvie Laquerre; Marc R. Arnone; Katherine G. Moss; Jingsong Yang; Kelly E. Fisher; Laurie S. Kane-Carson; Kimberly N. Smitheman; Jessica Ward; Bradley Heidrich; Tara Renae Rheault; George M. Adjabeng; Keith R. Hornberger; John Stellwagen; Alex G. Waterson; Chao Han; Robert A. Mook; David E. Uehling; Alastair J. King

Activation of the Ras‐Raf‐MEK‐ERK pathway has been implicated in a large range of human cancers. Growth factor receptor stimulation by extracellular ligands activates Ras, which then sets in motion a signal transduction cascade through the Raf, MEK and ERK serine/threonine kinases. Mutation of the B‐Raf kinase constitutively activates MAPK signalling, thus bypassing the need for upstream stimuli. This has been genetically associated with several human cancers, especially occurrence of the B‐Raf V600E mutant and its high prevalence in melanoma, colorectal carcinoma, ovarian cancer, papillary thyroid carcinoma, and cholangiocarcinoma. The ability to selectively and potently inhibit B‐Raf should provide a potential therapy for patients with mutant B‐Raf tumors, for which addictive dependency on this pathway is observed. We have identified a novel, potent, and selective Raf kinase inhibitor that is capable of inhibiting the kinase activity of wild‐type B‐Raf, B‐Raf V600E and c‐Raf with IC 50 values of 3.2, 0.8, and 5.0 nM, respectively. Kinase panel screening for over 270 kinases has indicated that this inhibitor is selective for Raf kinase, with ∼400 fold selectivity towards B‐Raf over 91% of the other kinases tested. Specific cellular inhibition of B‐Raf V600E kinase by this inhibitor leads to decreased ERK phosphorylation and inhibition of cell proliferation by an initial arrest in the G1 phase of the cell cycle, followed by cell death. This inhibition is selective for cancer cells that specifically encode the mutation for B‐Raf V600E . Oral compound administration inhibits the growth of B‐Raf V600E mutant melanoma (A375P) and colon cancer (Colo205) human tumor xenografts, growing subcutaneously in immuno‐compromised mice. This cell‐specific B‐Raf V600E inhibitor is currently being evaluated in a human Phase I clinical trial. Citation Information: Mol Cancer Ther 2009;8(12 Suppl):B88.


Nature Communications | 2014

Structure and mechanism of action of the hydroxy-aryl-aldehyde class of IRE1 endoribonuclease inhibitors.

Mario Sanches; Nicole M. Duffy; Manisha Talukdar; Nero Thevakumaran; David Chiovitti; Marella D. Canny; Kenneth Lee; Igor Kurinov; David E. Uehling; Rima Al-awar; Gennadiy Poda; Michael Prakesch; Brian C. Wilson; Victor Tam; Colleen Schweitzer; Andras Toro; Julie L. Lucas; Danka Vuga; Lynn Lehmann; Daniel Durocher; Qingping Zeng; John B. Patterson; Frank Sicheri

Endoplasmic reticulum (ER) stress activates the unfolded protein response and its dysfunction is linked to multiple diseases. The stress transducer IRE1α is a transmembrane kinase endoribonuclease (RNase) that cleaves mRNA substrates to re-establish ER homeostasis. Aromatic ring systems containing hydroxy-aldehyde moieties, termed hydroxy aryl aldehydes (HAA), selectively inhibit IRE1α RNase and thus represent a novel chemical series for therapeutic development. We solved crystal structures of murine IRE1α in complex with three HAA inhibitors. HAA inhibitors engage a shallow pocket at the RNase active site through pi-stacking interactions with His910 and Phe889, an essential Schiff base with Lys907 and a H-bond with Tyr892. Structure activity studies and mutational analysis of contact residues define the optimal chemical space of inhibitors and validate the inhibitor binding site. These studies lay the foundation for understanding both the biochemical and cellular functions of IRE1α using small molecule inhibitors and suggest new avenues for inhibitor design.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery and optimization of imidazo[1,2-a]pyridine inhibitors of insulin-like growth factor-1 receptor (IGF-1R)

Kyle Allen Emmitte; Brian John Wilson; Erich W. Baum; Holly Kathleen Emerson; Kevin Wayne Kuntz; Kristen E. Nailor; James Michael Salovich; Stephon C. Smith; Mui Cheung; Roseanne M. Gerding; Kirk L. Stevens; David E. Uehling; Robert A. Mook; Ganesh S. Moorthy; Scott Howard Dickerson; Anne M. Hassell; M. Anthony Leesnitzer; Lisa M. Shewchuk; Arthur Groy; Jason L. Rowand; Kelly Anderson; Charity Atkins; Jingsong Yang; Peter Sabbatini; Rakesh Kumar

The optimization of imidazo[1,2-a]pyridine inhibitors as potent and selective inhibitors of IGF-1R is presented. Further optimization of oral exposure in mice is also discussed. Detailed selectivity, in vitro activity, and in vivo PK profiles of an optimized compound is also highlighted.


Bioorganic & Medicinal Chemistry Letters | 2008

Dual EGFR/ErbB-2 inhibitors from novel pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines

Robert D. Hubbard; Scott Howard Dickerson; Holly Kathleen Emerson; Robert J. Griffin; Michael J. Reno; Keith R. Hornberger; David W. Rusnak; Edgar R. Wood; David E. Uehling; Alex G. Waterson

A novel class of substituted pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines has been identified that are potent and selective inhibitors of both EGFR/ErbB-2 receptor tyrosine kinases. The inhibitors are found to display a range of enzyme and cellular potency and also to display a varying level of covalent modification of the kinase targets. Selected molecules, including compound 15h, were found to be potent in enzymatic and cellular assays while also demonstrating exposure in the mouse from an oral dose.


Bioorganic & Medicinal Chemistry Letters | 2011

Development of potent B-RafV600E inhibitors containing an arylsulfonamide headgroup.

John Stellwagen; George M. Adjabeng; Marc R. Arnone; Scott Howard Dickerson; Chao Han; Keith R. Hornberger; Alastair J. King; Robert A. Mook; Kimberly G. Petrov; Tara Renae Rheault; Cynthia M. Rominger; Olivia W. Rossanese; Kimberly N. Smitheman; Alex G. Waterson; David E. Uehling

A potent series of inhibitors against the B-Raf(V600E) kinase have been developed that show excellent activity in cellular assays and good oral bioavailability in rats. The key structural features of the series are an arylsulfonamide headgroup, a thiazole core, and a fluorine ortho to the sulfonamide nitrogen.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and stereochemical effects of pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines as EGFR and ErbB-2 inhibitors.

Kirk L. Stevens; Krystal J. Alligood; Jennifer G. Badiang Alberti; Thomas R. Caferro; Stanley D. Chamberlain; Scott Howard Dickerson; Hamilton D. Dickson; Holly Kathleen Emerson; Robert J. Griffin; Robert D. Hubbard; Barry R. Keith; Robert J. Mullin; Kimberly G. Petrov; Roseanne M. Gerding; Michael J. Reno; Tara Renae Rheault; David W. Rusnak; Douglas Mccord Sammond; Stephon C. Smith; David E. Uehling; Alex G. Waterson; Edgar R. Wood

A novel class of pyrrolidinyl-acetyleneic thieno[3,2-d]pyrimidines has been identified which potently inhibit the EGFR and ErbB-2 receptor tyrosine kinases. Synthetic modifications of the pyrrolidine carbamate moiety result in a range of effects on enzyme and cellular potency. In addition, the impact of the absolute stereochemical configuration on cellular potency and oral mouse pharmacokinetics is described.


Journal of Medicinal Chemistry | 2002

Synthesis and evaluation of potent and selective β3 adrenergic receptor agonists containing acylsulfonamide, sulfonylsulfonamide, and sulfonylurea carboxylic acid isosteres

David E. Uehling; Kelly Horne Donaldson; David N. Deaton; Clifton E. Hyman; Elizabeth E. Sugg; David G. Barrett; Robert G. Hughes; Barbara E. Reitter; Kim K. Adkison; Mary E. Lancaster; Frank Lee; Robert Hart; Mark A. Paulik; Bryan W. Sherman; Timothy A. True; Conrad Cowan

Collaboration


Dive into the David E. Uehling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rima Al-awar

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge