David Elan Martin Warsinger
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Elan Martin Warsinger.
Energy and Environmental Science | 2018
Akshay Deshmukh; Chanhee Boo; Vasiliki Karanikola; Shihong Lin; Anthony P. Straub; Tiezheng Tong; David Elan Martin Warsinger; Menachem Elimelech
Energy-efficient desalination and water treatment technologies play a critical role in augmenting freshwater resources without placing an excessive strain on limited energy supplies. By desalinating high-salinity waters using low-grade or waste heat, membrane distillation (MD) has the potential to increase sustainable water production, a key facet of the water-energy nexus. However, despite advances in membrane technology and the development of novel process configurations, the viability of MD as an energy-efficient desalination process remains uncertain. In this review, we examine the key challenges facing MD and explore the opportunities for improving MD membranes and system design. We begin by exploring how the energy efficiency of MD is limited by the thermal separation of water and dissolved solutes. We then assess the performance of MD relative to other desalination processes, including reverse osmosis and multi-effect distillation, comparing various metrics including energy efficiency, energy quality, and susceptibility to fouling. By analyzing the impact of membrane properties on the energy efficiency of an MD desalination system, we demonstrate the importance of maximizing porosity and optimizing thickness to minimize energy consumption. We also show how ineffective heat recovery and temperature polarization can limit the energetic performance of MD and how novel process variants seek to reduce these inefficiencies. Fouling, scaling, and wetting can have a significant detrimental impact on MD performance. We outline how novel membrane designs with special surface wettability and process-based fouling control strategies may bolster membrane and process robustness. Finally, we explore applications where MD may be able to outperform established desalination technologies, increasing water production without consuming large amounts of electrical or high-grade thermal energy. We conclude by discussing the outlook for MD desalination, highlighting challenges and key areas for future research and development.
Environmental Science: Water Research & Technology | 2017
David Elan Martin Warsinger; Amelia Servi; Grace B. Connors; Musthafa O. Mavukkandy; Hassan A. Arafat; Karen K. Gleason; John H. Lienhard
The critical failure mode for membrane distillation (MD) desalination is wetting through the pores of the hydrophobic membrane, which allows the saline solution to leak through and contaminate the permeate. The standard practice for reversing membrane wetting is to dry out the membrane for several hours before resuming the desalination process. An alternative method for mitigating MD membrane wetting is examined in this study, wherein pressurized air is pushed through the membrane from the permeate side for several seconds, forcing trapped water out before it can evaporate. To compare the wetting reversal methods, the liquid entry pressure (LEP) was surpassed with saline water at varied salinity. Then, either a 24+ hour dryout, a 10 second pressurized air treatment, or both were applied, followed by remeasuring the LEP. Pressurized air backwashing restored the LEP to 75% of the original value for lower salinity feeds. The backwashing method is hypothesized to achieve this superior result because it removes saline solution from the membrane without separating water and salts by vaporization, whereas the dryout method causes seawater within the membrane to evaporate, leaving crystalline solutes trapped within the membrane. Such trapped particles may act as a path for rewetting, and also impair permeate flux and system energy efficiency. For all three methods, membranes tested with higher salinity water had lower LEP restoration irrespective of the restoration technique used. A method for testing LEP with more accuracy was also developed, using stepwise pressure increases. SEM images showed that the restoration methods did not alter the membranes themselves, although there remains a possibility that the air backwashing can cause superficial tears.
Water Research | 2018
Mohammad Rezaei; David Elan Martin Warsinger; John H. Lienhard; Mikel Duke; T. Matsuura; Wolfgang M. Samhaber
Membrane distillation (MD) is a rapidly emerging water treatment technology; however, membrane pore wetting is a primary barrier to widespread industrial use of MD. The primary causes of membrane wetting are exceedance of liquid entry pressure and membrane fouling. Developments in membrane design and the use of pretreatment have provided significant advancement toward wetting prevention in membrane distillation, but further progress is needed. In this study, a broad review is carried out on wetting incidence in membrane distillation processes. Based on this perspective, the study describes the wetting mechanisms, wetting causes, and wetting detection methods, as well as hydrophobicity measurements of MD membranes. This review discusses current understanding and areas for future investigation on the influence of operating conditions, MD configuration, and membrane non-wettability characteristics on wetting phenomena. Additionally, the review highlights mathematical wetting models and several approaches to wetting control, such as membrane fabrication and modification, as well as techniques for membrane restoration in MD. The literature shows that inorganic scaling and organic fouling are the main causes of membrane wetting. The regeneration of wetting MD membranes is found to be challenging and the obtained results are usually not favorable. Several pretreatment processes are found to inhibit membrane wetting by removing the wetting agents from the feed solution. Various advanced membrane designs are considered to bring membrane surface non-wettability to the states of superhydrophobicity and superomniphobicity; however, these methods commonly demand complex fabrication processes or high-specialized equipment. Recharging air in the feed to maintain protective air layers on the membrane surface has proven to be very effective to prevent wetting, but such techniques are immature and in need of significant research on design, optimization, and pilot-scale studies.
Environmental Science & Technology | 2018
Razi Epsztein; Evyatar Shaulsky; Nadir Dizge; David Elan Martin Warsinger; Menachem Elimelech
The main objective of this study is to examine how the charge densities of four monovalent anions-fluoride (F-), chloride (Cl-), bromide (Br-), and nitrate (NO3-)-influence their Donnan (charge) exclusion by a charged nanofiltration (NF) membrane. We systematically studied the rejection behavior of ternary ion solutions containing sodium cation (Na+) and two of the monovalent anions as a function of the pH with a polyamide NF membrane. In the solutions containing F- and Cl- or F- and Br-, F- rejection was higher than Cl- or Br- rejection only when the solution pH was higher than 5.5, suggesting that F- (which has a higher charge density) was repelled more strongly by the negatively charged membrane. The order of change in the activation energy for the transport of the four anions through the polyamide membrane as a response to the increase of the membrane negative charge was the following: F- > Cl- > NO3- > Br-. This order corroborates our main hypothesis that an anion with a smaller ionic radius, and hence a higher charge density, is more affected by the Donnan (charge)-exclusion mechanism in NF. We conclude with a proposed mechanism for the role of ionic charge density in the rejection of monovalent anions in NF.
Environmental Science & Technology | 2018
Fengmin Du; David Elan Martin Warsinger; Tamanna I. Urmi; Gregory P. Thiel; Amit Kumar; John H. Lienhard
The ability to increase pH is a crucial need for desalination pretreatment (especially in reverse osmosis) and for other industries, but processes used to raise pH often incur significant emissions and nonrenewable resource use. Alternatively, waste brine from desalination can be used to create sodium hydroxide, via appropriate concentration and purification pretreatment steps, for input into the chlor-alkali process. In this work, an efficient process train (with variations) is developed and modeled for sodium hydroxide production from seawater desalination brine using membrane chlor-alkali electrolysis. The integrated system includes nanofiltration, concentration via evaporation or mechanical vapor compression, chemical softening, further ion-exchange softening, dechlorination, and membrane electrolysis. System productivity, component performance, and energy consumption of the NaOH production process are highlighted, and their dependencies on electrolyzer outlet conditions and brine recirculation are investigated. The analysis of the process also includes assessment of the energy efficiency of major components, estimation of system operating expense and comparison with similar processes. The brine-to-caustic process is shown to be technically feasible while offering several advantages, that is, the reduced environmental impact of desalination through lessened brine discharge, and the increase in the overall water recovery ratio of the reverse osmosis facility. Additionally, best-use conditions are given for producing caustic not only for use within the plant, but also in excess amounts for potential revenue.
Desalination | 2015
David Elan Martin Warsinger; Jaichander Swaminathan; Elena Guillen-Burrieza; Hassan A. Arafat; John H. Lienhard
Journal of Membrane Science | 2016
John H. Lienhard; Hyung Won Chung; Jaichander Swaminathan; David Elan Martin Warsinger
Journal of Membrane Science | 2016
Faisal A. AlMarzooqi; Hassan A. Arafat; John H. Lienhard; Jaichander Swaminathan; Hyung Won Chung; David Elan Martin Warsinger
Entropy | 2015
David Elan Martin Warsinger; Karan H. Mistry; Kishor G. Nayar; Hyung Won Chung; John H. Lienhard
Applied Energy | 2016
Jaichander Swaminathan; Hyung Won Chung; David Elan Martin Warsinger; John H. Lienhard