David Engelberg
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Engelberg.
EMBO Reports | 2002
Moran Benhar; David Engelberg; Alexander Levitzki
Anticancer therapy is frequently efficient in early stages of the disease, whereas advanced tumors are usually resistant to the same treatments. The molecular basis for this change is not entirely understood. Many anticancer agents are DNA‐ or cytoskeleton‐damaging drugs that show some specificity towards dividing cells. However, recent studies show that these agents also activate stress‐signaling cascades that may play a role in eliciting the observed therapeutic effects. We discuss recent findings that suggest that induction of stress signaling in oncogenically transformed cells is integrated into apoptotic pathways. Reactive oxygen species (ROS) and stress‐activated protein kinases (SAPKs), which are potentiated in recently transformed cells, emerge as key effectors of cell death. In advanced tumors, however, these agents are downregulated and, consequently, death signaling is suppressed. Such changes in ROS and SAPK activity levels during the course of tumor development may underlie the changes in responsiveness to anticancer therapy.
Molecular and Cellular Biology | 2001
Moran Benhar; Idan Dalyot; David Engelberg; Alexander Levitzki
ABSTRACT Many primary tumors as well as transformed cell lines display high sensitivity to chemotherapeutic drugs and radiation. The molecular mechanisms that underlie this sensitivity are largely unknown. Here we show that the sensitization of transformed cells to stress stimuli is due to the potentiation of the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase pathways. Activation of these pathways by the antitumor drug cis-platin (CDDP) and by other stress agents is markedly enhanced and is induced by lower stress doses in NIH 3T3 cells overexpressing epidermal growth factor receptor, HER1–2 kinase, or oncogenic Ras than in nontransformed NIH 3T3 cells. Inhibition of stress kinase activity by specific inhibitors reduces CDDP-mediated cell death in transformed cells, whereas overactivation of stress kinase pathways augments cells death. Potentiation of stress kinases is a common feature of cells transformed by different oncogenes, including cells derived from human tumors, and is shown here to be independent of the activity of the particular transforming oncoprotein. We further show that the mechanism that underlies potentiation of stress kinases in transformed cells involves reactive oxygen species (ROS), whose production is elevated in these cells. JNK/p38 activation is inhibited by antioxidants and in particular by inhibitors of the mitochondrial respiratory chain and NADPH oxidase. Conversely, by artificially elevating ROS levels in nontransformed NIH 3T3 cells we were able to induce potentiation of JNK/p38 activation. Taken together, our findings suggest that ROS-dependent potentiation of stress kinase pathways accounts for the sensitization of transformed cells to stress and anticancer drugs.
Oncogene | 2002
Moran Benhar; David Engelberg; Alexander Levitzki
Cisplatin (CDDP) is an efficient DNA-damaging antitumor agent employed for the treatment of various human cancers. CDDP activates nuclear as well as cytoplasmatic signaling pathways involved in regulation of the cell cycle, damage repair and programmed cell death. Here we report that CDDP also activates a membrane-integrated protein, the epidermal growth factor receptor (EGFR). We show that EGFR is activated in response to CDDP in various types of cells that overexpress the receptor, including transformed human glioma cells and human breast tumor cells. CDDP-induced EGFR activation requires its kinase activity, as it can be blocked by an EGFR kinase inhibitor or by expression of a kinase dead receptor. We also show that CDDP-induced EGFR activation is independent of receptor ligand. CDDP induces the activation of c-Src, and EGFR activation is blocked by Src-family inhibitor PP1, suggesting that Src kinases mediate CDDP-induced EGFR activation. We propose that EGFR activation in response to CDDP is a survival response, since inhibition of EGFR activation enhances CDDP-induced death. These findings show that signals generated by DNA damage can modulate EGFR activity, and argue that interfering with CDDP-induced EGFR activation in tumor cells might be a useful approach to sensitize these cells to genotoxic agents.
Molecular and Cellular Biology | 1999
Ariel Stanhill; Naomi Schick; David Engelberg
ABSTRACT Haploid yeast cells are capable of invading agar when grown on rich media. Cells of the Σ1278b genetic background manifest this property, whereas other laboratory strains are incapable of invasive growth. We show that disruption of the RAS2 gene in the Σ1278b background significantly reduces invasive growth but that expression of a constitutively active Ras2p (Ras2Val19p) in this strain has a minimal effect on its invasiveness. On the other hand, expression of Ras2Val19p in another laboratory strain, SP1, rendered it invasive. These results suggest that a hyperactive Ras2 pathway induces invasive growth and that this pathway might be overactive in the Σ1278b genetic background. Indeed, cells of the Σ1278b are defective in the induction of stress-responsive genes, while theirGcn4 target genes are constitutively transcribed. This pattern of gene expression was previously shown to be associated with an active Ras/cyclic AMP (cAMP) pathway. We show that suppression of stress-related genes in Σ1278b cells is a result of their inability to activate transcription through the stress response element (STRE). Disruption of RAS2, which abolished invasiveness, induced an increase in STRE activity. Further, in the SP1 genetic background, disruption of either the MSN2/4 genes (encoding activators of STRE) or the yAP-1 gene was sufficient to restore invasive growth inras2Δ cells. We conclude that Ras2-mediated suppression of the stress response is sufficient to induce invasiveness. Accordingly, the fact that the stress response is suppressed in Σ1278b background explains its invasiveness. It seems that invasiveness is a phenotype related to unregulated growth and is therefore manifested by cells harboring an overactive Ras/cAMP cascade. In this respect, invasiveness in yeast is reminiscent of the property of ras-transformed fibroblasts to invade soft agar.
Journal of Biological Chemistry | 1999
Susanne Zimmermann; Alexander Baumann; Karsten Jaekel; Irit Marbach; David Engelberg; Hanns Frohnmeyer
A UV response that involves the Ras proteins and AP-1 transcription factors has recently been described in mammals and yeast. To test whether an equivalent response exists in plants, we monitored the expression of Arabidopsis histidinol dehydrogenase gene (HDH), a homologue of the yeastHIS4 gene, which is strongly induced by UV light and is a target of the transcriptional activator Gcn4. We show thatHDH mRNA levels increase specifically in response to UV-B light. Only small increases were detected upon exposure to other wavelengths. To isolate plant genes involved in this UV response, agcn4 mutant was transfected with an Arabidopsis thaliana cDNA library. A new type of nucleotide diphosphate kinase (NDPK Ia) with a significant homology to the human tumor suppressor protein Nm23 rescued the gcn4 phenotype. NDPK Ia specifically binds to the HIS4 promoter in vitro and induces HIS4 transcription in yeast. InArabidopsis, the NDPK Ia protein is located in the nucleus and cytosol. Expression studies in seedlings revealed that the level ofNDPK Ia mRNA, like that of HDH , increases in response to UV-B light. It appears that NDPK Ia and HDH are components of a novel UV-responsive pathway in A. thaliana.
Journal of Biological Chemistry | 2001
Michal Bell; Ricardo Capone; Itai Pashtan; Alexander Levitzki; David Engelberg
Mitogen-activated protein kinases (MAPKs) play pivotal roles in growth, development, differentiation, and apoptosis. The exact role of a given MAPK in these processes is not fully understood. This question could be addressed using active forms of these enzymes that are independent of external stimulation and upstream regulation. Yet, such molecules are not available. MAPK activation requires dual phosphorylation, on neighboring Tyr and Thr residues, catalyzed by MAPK kinases (MAPKKs). It is not known how to force MAPK activation independent of MAPKK phosphorylation. Here we describe a series of nine hyperactive (catalytically and biologically), MAPKK-independent variants of the MAPK Hog1. Each of the active molecules contains just a single point mutation. Six mutations are in the conserved L16 domain of the protein. The active Hog1 mutants were obtained through a novel genetic screen that could be applied for isolation of active MAPKs of other families. Equivalent mutations, introduced to the human p38α, rendered the enzyme active even when produced in Escherichia coli, showing that the mutations increased the intrinsic catalytic activity of p38. It implies that the activating mutations could be directly used for production of active forms of MAPKs from yeasts to humans and could open the way to revealing their biological functions.
Journal of Biological Chemistry | 2010
Bing Su; Yahao Bu; David Engelberg; Irwin H. Gelman
SSeCKS/Gravin/AKAP12 (“SSeCKS”) encodes a cytoskeletal protein that regulates G1 → S progression by scaffolding cyclins, protein kinase C (PKC) and PKA. SSeCKS is down-regulated in many tumor types including prostate, and when re-expressed in MAT-LyLu (MLL) prostate cancer cells, SSeCKS selectively inhibits metastasis by suppressing neovascularization at distal sites, correlating with its ability to down-regulate proangiogenic genes including Vegfa. However, the forced re-expression of VEGF only rescues partial lung metastasis formation. Here, we show that SSeCKS potently inhibits chemotaxis and Matrigel invasion, motility parameters contributing to metastasis formation. SSeCKS suppressed serum-induced activation of the Raf/MEK/ERK pathway, resulting in down-regulation of matrix metalloproteinase-2 expression. In contrast, SSeCKS had no effect on serum-induced phosphorylation of the Src substrate, Shc, in agreement with our previous data that SSeCKS does not inhibit Src kinase activity in cells. Invasiveness and chemotaxis could be restored by the forced expression of constitutively active MEK1, MEK2, ERK1, or PKCα. SSeCKS suppressed phorbol ester-induced ERK1/2 activity only if it encoded its PKC binding domain (amino acids 553–900), suggesting that SSeCKS attenuates ERK activation through a direct scaffolding of conventional and/or novel PKC isozymes. Finally, control of MLL invasiveness by SSeCKS is influenced by the actin cytoskeleton: the ability of SSeCKS to inhibit podosome formation is unaffected by cytochalasin D or jasplakinolide, whereas its ability to inhibit MEK1/2 and ERK1/2 activation is nullified by jasplakinolide. Our findings suggest that SSeCKS suppresses metastatic motility by disengaging activated Src and then inhibiting the PKC-Raf/MEK/ERK pathways controlling matrix metalloproteinase-2 expression and podosome formation.
Molecular Microbiology | 2002
Melanie R. Grably; Ariel Stanhill; Osnat Tell; David Engelberg
In an effort to understand how an accurate level of stress‐specific expression is obtained, we studied the promoter of the yeast HSP104 gene. Through 5′ deletions, we defined a 334 bp fragment upstream of the first coding AUG as sufficient and essential for maximal basal activity and a 260 bp fragment as sufficient and essential for heat shock responsiveness. These sequences contain heat shock elements (HSEs) and stress response elements (STREs) that cooperate to achieve maximal inducible expression. However, in the absence of one set of factors (e.g. in msn2Δmsn4Δ cells) proper induction is obtained exclusively through HSEs. We also show that HSP104 is constitutively derepressed in ras2Δ cells. This derepression is achieved exclusively through activation of STREs, with no role for HSEs. Strikingly, in ras2Δmsn2Δmsn4Δ cells the HSP104 promoter is also derepressed, but in this strain derepression is mediated through HSEs, showing the flexibility and adaptation of the promoter. Thus, appropriate transcription of HSP104 is usually obtained through cooperation between the Msn2/4/STRE and the HSF/ HSE systems, but each factor could activate the promoter alone, backing up the other. Transcription control of HSP104 is adaptive and robust, ensuring proper expression under extreme conditions and in various mutants.
Molecular and Cellular Biology | 2003
Gilad Yaakov; Michal Bell; Stefan Hohmann; David Engelberg
ABSTRACT Mitogen-activated protein kinases (MAPKs) play key roles in differentiation, growth, proliferation, and apoptosis. Although MAPKs have been extensively studied, the precise function, specific substrates, and target genes of each MAPK are not known. These issues could be addressed by sole activation of a given MAPK, e.g., through the use of constitutively active MAPK enzymes. We have recently reported the isolation of eight hyperactive mutants of the Saccharomyces cerevisiae MAPK Hog1, each of which bears a distinct single point mutation. These mutants acquired high intrinsic catalytic activity but did not impose the full biological potential of the Hog1 pathway. Here we describe our attempt to obtain a MAPK that is more active than the previous mutants both catalytically and biologically. We combined two different activating point mutations in the same gene and found that two of the resulting double mutants acquired unusual properties. These alleles, HOG1D170A,F318L and HOG1D170A,F318S , induced a severe growth inhibition and had to be studied through an inducible expression system. This growth inhibition correlated with very high spontaneous (in the absence of any stimulation) catalytic activity and strong induction of Hog1 target genes. Furthermore, analysis of the phosphorylation status of these active alleles shows that their acquired intrinsic activity is independent of either phospho-Thr174 or phospho-Tyr176. Through fluorescence-activated cell sorting analysis, we show that the effect on cell growth inhibition is not a result of cell death. This study provides the first example of a MAPK that is intrinsically activated by mutations and induces a strong biological effect.
FEBS Journal | 2007
Michal Avitzour; Ron Diskin; Bilha Raboy; Nadav Askari; David Engelberg; Oded Livnah
The p38 mitogen‐activated protein kinases are activated in response to various extracellular signals in eukaryotic cells and play a critical role in the cellular responses to these signals. The four mammalian isoforms (p38α, p38β, p38γ, and p38δ) are coexpressed and coactivated in the same cells. The exact role of each p38 isoform has not been entirely identified, in part due to the inability to activate each member individually. This could be resolved by the use of intrinsically active mutants. Based on previous studies on yeast p38/Hog1 [Bell M, Capone R, Pashtan I, Levitzki A & Engelberg D (2001) J Biol Chem276, 25351–2538] and human p38α[Diskin R, Askari N, Capone R, Engelberg D & Livnah O (2004) J Biol Chem279, 47040–47049] we have generated intrinsically active p38β, p38γ and p38δ mutants. In addition, we have identified a new activating mutation site in p38α. Most of the activating mutations are located in the L16 loop, in which conformational changes were shown to induce activation. We show that these changes impose substantial autophosphorylation activity, providing a mechanistic explanation for the intrinsic activity of the mutants. The new active variants maintain specificity towards substrates and inhibitors similar to that of the parental wild‐type proteins, and are phosphorylated by mitogen‐activated protein kinase kinase 6, their upstream activator. Thus, we have completed the development of a series of intrinsically active mutants of all p38 isoforms. These active variants could now become powerful tools for the elucidating the activation mechanism and specific biological roles of each p38 isoform.