Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Esteban-Gómez is active.

Publication


Featured researches published by David Esteban-Gómez.


Organic and Biomolecular Chemistry | 2005

Chiral receptors for phosphate ions

Valeria Amendola; Massimo Boiocchi; David Esteban-Gómez; Luigi Fabbrizzi; Enrico Monzani

The binding tendencies of the enantiomeric forms, R,R and S,S, of the neutral receptor 1 towards anions were investigated through UV-vis and 1H NMR titration experiments in DMSO. Both enantiomers form stable H-bond complexes with carboxylates and phosphates. In particular, receptor 1 strongly binds two H2PO4- ions according two stepwise equilibria, in which logK2 is higher than logK1. Such an unusual cooperativity effect is to be ascribed to the formation of strong H-bond interactions between the two H2PO4- anions, when bound to the two urea subunits of the receptor, as demonstrated by the crystal and molecular structures of the 1 : 2 complex salt: [Bu4N]2[R,R-1...(H2PO4)2]. The S,S enantiomer forms an H-bond complex with the biologically relevant D-2,3-diphosphoglycerate anion, whose association constant is twice that of the R,R complex. Such an effect is ascribed to the different structural features of the two diastereomeric complexes in solution, as shown by 31P NMR studies.


Inorganic Chemistry | 2012

Monopicolinate cyclen and cyclam derivatives for stable copper(II) complexation.

Luís M. P. Lima; David Esteban-Gómez; Rita Delgado; Carlos Platas-Iglesias; Raphaël Tripier

The syntheses of a new 1,4,7,10-tetraazacyclododecane (cyclen) derivative bearing a picolinate pendant arm (HL1), and its 1,4,8,11-tetraazacyclotetradecane (cyclam) analogue HL2, were achieved by using two different selective-protection methods involving the preparation of cyclen-bisaminal or phosphoryl cyclam derivatives. The acid-base properties of both compounds were investigated as well as their coordination chemistry, especially with Cu(2+), in aqueous solution and in solid state. The copper(II) complexes were synthesized, and the single crystal X-ray diffraction structures of compounds of formula [Cu(HL)](ClO(4))(2)·H(2)O (L = L1 or L2), [CuL1](ClO(4)) and [CuL2]Cl·2H(2)O, were determined. These studies revealed that protonation of the complexes occurs on the carboxylate group of the picolinate moiety. Stability constants of the complexes were determined at 25.0 °C and ionic strength 0.10 M in KNO(3) using potentiometric titrations. Both ligands form complexes with Cu(2+) that are thermodynamically very stable. Additionally, both HL1 and HL2 exhibit an important selectivity for Cu(2+) over Zn(2+). The kinetic inertness in acidic medium of both complexes of Cu(2+) was evaluated by spectrophotometry revealing that [CuL2](+) is much more inert than [CuL1](+). The determined half-life values also demonstrate the very high kinetic inertness of [CuL2](+) when compared to a list of copper(II) complexes of other macrocyclic ligands. The coordination geometry of the copper center in the complexes was established in aqueous solution from UV-visible and electron paramagnetic resonance (EPR) spectroscopy, showing that the solution structures of both complexes are in excellent agreement with those of crystallographic data. Cyclic voltammetry experiments point to a good stability of the complexes with respect to metal ion dissociation upon reduction of the metal ion to Cu(+) at about neutral pH. Our results revealed that the cyclam-based ligand HL2 is a very attractive receptor for copper(II), presenting a fast complexation process, a high kinetic inertness, and important thermodynamic and electrochemical stability.


Inorganic Chemistry | 2011

Lanthanide dota-like Complexes Containing a Picolinate Pendant: Structural Entry for the Design of LnIII-Based Luminescent Probes

Martín Regueiro-Figueroa; Bachir Bensenane; Erika Ruscsák; David Esteban-Gómez; Loïc J. Charbonnière; Gyula Tircsó; Imre Tóth; Andrés de Blas; Teresa Rodríguez-Blas; Carlos Platas-Iglesias

In this contribution we present two ligands based on a do3a platform containing a picolinate group attached to the fourth nitrogen atom of the cyclen unit, which are designed for stable lanthanide complexation in aqueous solutions. Potentiometric measurements reveal that the thermodynamic stability of the complexes is very high (log K = 21.2-23.5), being comparable to that of the dota analogues. Luminescence lifetime measurements performed on solutions of the Eu(III) and Tb(III) complexes indicate that the complexes are nine coordinate with no inner-sphere water molecules. A combination of density functional theory (DFT) calculations and NMR measurements shows that for the complexes of the heaviest lanthanides there is a major isomer in solution consisting of the enantiomeric pair Λ(δδδδ) and Δ(λλλλ), which provides square antiprismatic coordination (SAP) around the metal ion. Analysis of the Yb(III)-induced paramagnetic shifts unambiguously confirms that these complexes have SAP coordination in aqueous solution. For the light lanthanide ions however both the SAP and twisted-square antiprismatic (TSAP) isomers are present in solution. Inversion of the cyclen ring appears to be the rate-determining step for the Λ(δδδδ) ↔ Δ(λλλλ) enantiomerization process observed in the Lu(III) complexes. The energy barriers obtained from NMR measurements for this dynamic process are in excellent agreement with those predicted by DFT calculations. The energy barriers calculated for the arm-rotation process are considerably lower than those obtained for the ring-inversion path. Kinetic studies show that replacement of an acetate arm of dota by a picolinate pendant results in a 3-fold increase in the formation rate of the corresponding Eu(III) complexes and a significant increase of the rates of acid-catalyzed dissociation of the complexes. However, these rates are 1-2 orders of magnitude lower than those of do3a analogues, which shows that the complexes reported herein are remarkably inert with respect to metal ion dissociation.


ChemPhysChem | 2012

Hyperfine coupling constants on inner-sphere water molecules of Gd(III)-based MRI contrast agents.

David Esteban-Gómez; Andrés de Blas; Teresa Rodríguez-Blas; Lothar Helm; Carlos Platas-Iglesias

Herein we present a theoretical investigation of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Gd(H(2)O)(8)](3+) and different Gd(III)-based magnetic resonance imaging contrast agents such as [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)]. DFT calculations performed on the [Gd(H(2)O)(8)](3+) model system show that both hybrid-GGA functionals (BH&HLYP, B3PW91 and PBE1PBE) and the hybrid meta-GGA functional TPSSh provide (17)O HFCCs in close agreement with the experimental data. The use of all-electron relativistic approaches based on the DKH2 approximation and the use of relativistic effective core potentials (RECP) provide results of essentially the same quality. The accurate calculation of HFCCs on the [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)] complexes requires an adequate description of solvent effects. This was achieved by using a mixed cluster/continuum approach that includes explicitly two second-sphere water molecules. The calculated isotropic (17)O HFCCs (A(iso)) fall within the range 0.40-0.56 MHz, and show deviations from the corresponding experimental values typically lower than 0.05 MHz. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Gd(III) ion, as well as by the orientation of the water molecule plane with respect to the Gd-O vector. (1)H HFCCs of coordinated water molecules and (17)O HFCCs of second-sphere water molecules take values close to zero.


Inorganic Chemistry | 2009

Stability, Water Exchange, and Anion Binding Studies on Lanthanide(III) Complexes with a Macrocyclic Ligand Based on 1,7-Diaza-12-crown-4: Extremely Fast Water Exchange on the Gd3+ Complex

Zoltán Pálinkás; Adrián Roca-Sabio; Marta Mato-Iglesias; David Esteban-Gómez; Carlos Platas-Iglesias; Andrés de Blas; Teresa Rodríguez-Blas; Éva Tóth

The picolinate-derivative ligand based on the 1,7-diaza-12-crown-4 platform (bp12c4(2-)) forms stable Ln(3+) complexes with stability constants increasing from the early to the middle lanthanides, then being relatively constant for the rest of the series (logK(LnL) = 16.81(0.06), 18.82(0.01), and 18.08(0.05) for Ln = La, Gd, and Yb, respectively). The complex formation is fast, allowing for direct potentiometric titrations to assess the stability constants. In the presence of Zn(2+), the dissociation of [Gd(bp12c4)](+) proceeds both via proton- and metal-assisted pathways, and in this respect, this system is intermediate between DTPA-type and macrocyclic, DOTA-type chelates, for which the dissociation is predominated by metal- or proton-assisted pathways, respectively. The Cu(2+) exchange shows an unexpected pH dependency, with the observed rate constants decreasing with increasing proton concentration. The rate of water exchange, assessed by (17)O NMR, is extremely high on the [Gd(bp12c4)(H(2)O)(q)](+) complex (k(ex)(298) = (2.20 +/- 0.15) x 10(8) s(-1)), and is in the same order of magnitude as for the Gd(3+) aqua ion (k(ex)(298) = 8.0 x 10(8) s(-1)). In aqueous solution, the [Gd(bp12c4)(H(2)O)(q)](+) complex is present in hydration equilibrium between nine-coordinate, monohydrated, and ten-coordinate, bishydrated species. We attribute the fast exchange to the hydration equilibrium and to the flexible nature of the inner coordination sphere. The large negative value of the activation entropy (DeltaS = -35 +/- 8 J mol(-1) K(-1)) points to an associative character for the water exchange and suggests that water exchange on the nine-coordinate, monohydrated species is predominant in the overall exchange. Relaxometric and luminescence measurements on the Gd(3+) and Eu(3+) analogues, respectively, indicate strong binding of endogenous anions such as citrate, hydrogencarbonate, or phosphate to [Ln(bp12c4)](+) complexes (K(aff) = 280 +/- 20 M(-1), 630 +/- 50 M(-1), and 250 +/- 20 M(-1), respectively). In the ternary complexes, the inner sphere water molecules are fully replaced by the corresponding anion. Anion binding is favored by the positive charge of the [Ln(bp12c4)](+) complexes and the adjacent position of the two inner sphere water molecules. To obtain information about the structure of the ternary complexes, the [Gd(bp12c4)(HCO(3))] and [Gd(bp12c4)(H(2)PO(4))] systems were investigated by means of density functional theory calculations (B3LYP model). They show that anion coordination provokes an important lengthening of the distances between the donor atoms and the lanthanide ion. The coordination of phosphate induces a more important distortion of the metal coordination environment than the coordination of hydrogencarbonate, in accordance with a higher binding constant for HCO(3)(-) and a more important steric demand of phosphate.


Inorganic Chemistry | 2012

Lanthanide(III) complexes with ligands derived from a cyclen framework containing pyridinecarboxylate pendants. The effect of steric hindrance on the hydration number.

Aurora Rodríguez-Rodríguez; David Esteban-Gómez; Andrés de Blas; Teresa Rodríguez-Blas; Marianna Fekete; Mauro Botta; Raphaël Tripier; Carlos Platas-Iglesias

Two new macrocyclic ligands, 6,6′-((1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2DODPA) and 6,6′-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2Me-DODPA), designed for complexation of lanthanide ions in aqueous solution, have been synthesized and studied. The X-ray crystal structure of [Yb(DODPA)](PF6)·H2O shows that the metal ion is directly bound to the eight donor atoms of the ligand, which results in a square-antiprismatic coordination around the metal ion. The hydration numbers (q) obtained from luminescence lifetime measurements in aqueous solution of the Eu(III) and Tb(III) complexes indicate that the DODPA complexes contain one inner-sphere water molecule, while those of the methylated analogue H2Me-DODPA are q = 0. The structure of the complexes in solution has been investigated by 1H and 13C NMR spectroscopy, as well as by theoretical calculations performed at the density functional theory (DFT; mPWB95) level. The minimum energy conformation calculated for the Yb(III) complex [Λ(λλλλ)] is in good agreement with the experimental structure in solution, as demonstrated by the analysis of the Yb(III)-induced paramagnetic 1H shifts. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd(Me-DODPA)]+ are typical of a complex with q = 0, where the observed relaxivity can be accounted for by the outer-sphere mechanism. However, [Gd(DODPA)]+ shows NMRD profiles consistent with the presence of both inner- and outer-sphere contributions to relaxivity. A simultaneous fitting of the NMRD profiles and variable temperature 17O NMR chemical shifts and transversal relaxation rates provided the parameters governing the relaxivity in [Gd(DODPA)]+. The results show that this system is endowed with a relatively fast water exchange rate k(ex)(298) = 58 × 10(6) s(–1).


Journal of Materials Chemistry | 2005

A two-channel chemosensor for the optical detection of carboxylic acids, including cholic acid

David Esteban-Gómez; Luigi Fabbrizzi; Maurizio Licchelli; Donatella Sacchi

A neutral receptor, in which a urea fragment has been equipped with two naphthaleneimide subunits, on interaction with acetate, in a DMSO solution, undergoes deprotonation of one of the N–H fragments; an event which is signalled by a yellow-to-red colour change and by the quenching of the blue fluorescence of the naphthalneimide subunit, with no competition by a number of anions (phosphate, nitrate, sulfate, chloride or bromide). This procedure can be employed for the visual and spectroscopic detection of cholic acid, even in presence of the other competing bile acids, such as glycocholic and taurocholic.


Inorganic Chemistry | 2010

Molecular recognition of sialic acid by lanthanide(III) complexes through cooperative two-site binding.

Martín Regueiro-Figueroa; David Esteban-Gómez; Thomas Chauvin; Éva Tóth; Andrés de Blas; Teresa Rodríguez-Blas; Carlos Platas-Iglesias

Herein we report two new ligands, 1,4,7-tris(carboxymethyl)-10-[2-(dihydroxyboranyl)benzyl]-1,4,7,10-tetraazacyclododecane (L(1)) and 1,4,7-tris(carboxymethyl)-10-[3-(dihydroxyboranyl)benzyl]-1,4,7,10-tetraazacyclododecane (L(2)), which contain a phenylboronic acid (PBA) function and a 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate cage for complexation of lanthanide ions in an aqueous solution. The pK(a) of the PBA function amounts to 4.6 in [Gd(L(1))] and 8.9 in [Gd(L(2))], with the value of the L(2) analogue being very similar to that of PBA (8.8). These results are explained by the coordination of the PBA function of L(1) to the Gd(III) ion, which results in a dramatic lowering of its pK(a). As a consequence, [Gd(L(1))] does not bind to saccharides at physiological pH. The nuclear magnetic relaxation dispersion profiles recorded for [Gd(L(1))] and [Gd(L(2))] confirm that the phenylboronate function is coordinated to the metal ion in the L(1) derivative, which results in a q = 0 complex. The interaction of the [Gd(L(2))] complex with 5-acetylneuraminic acid (Neu5Ac) and 2-alpha-O-methyl-5-acetylneuraminic acid (MeNeu5Ac) has been investigated by means of spectrophotometric titrations in an aqueous solution (pH 7.4, 0.1 M 3-(N-morpholino)propanesulfonic acid buffer). Furthermore, we have also investigated the binding of these receptors with competing monosaccharides such as D-(+)-glucose, D-fructose, D-mannose, D-galactose, methyl alpha-D-galactoside, and methyl alpha-D-mannoside. The binding constants obtained indicate an important selectivity of [Gd(L(2))] for Neu5Ac (K(eq) = 151) over D-(+)-glucose (K(eq) = 12.3), D-mannose (K(eq) = 21.9), and D-galactose (K(eq) = 24.5). Furthermore, a very weak binding affinity was observed in the case of methyl alpha-D-galactoside and methyl alpha-D-mannoside. An 8-fold increase of the binding constant of [Gd(L(2))] with Neu5Ac is observed when compared to that of PBA determined under the same conditions (K(eq) = 19). (13)C NMR spectroscopy and density functional theory calculations performed at the B3LYP/6-31G(d) level show that this is due to a cooperative two-site binding of Neu5Ac through (1) ester formation by interaction on the PBA function of the receptor and (2) coordination of the carboxylate group of Neu5Ac to the Gd(III) ion. The emission lifetime of the (5)D(4) level of Tb(III) in [Tb(L(2))] increases upon Neu5Ac binding, in line with the displacement of inner-sphere water molecules due to coordination of Neu5Ac to the metal ion.


Inorganic Chemistry | 2013

Hyperfine Coupling Constants on Inner-Sphere Water Molecules of a Triazacyclononane-based Mn(II) Complex and Related Systems Relevant as MRI Contrast Agents

Véronique Patinec; Gabriele A. Rolla; Mauro Botta; Raphaël Tripier; David Esteban-Gómez; Carlos Platas-Iglesias

We report the synthesis of the ligand H2MeNO2A (1,4-bis(carboxymethyl)-7-methyl-1,4,7-triazacyclononane) and a detailed experimental and computational study of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Mn(MeNO2A)] and related Mn(2+) complexes relevant as potential contrast agents in magnetic resonance imaging (MRI). Nuclear magnetic relaxation dispersion (NMRD) profiles, (17)O NMR chemical shifts, and transverse relaxation rates of aqueous solutions of [Mn(MeNO2A)] were recorded to determine the parameters governing the relaxivity in this complex and the (17)O and (1)H HFCCs. DFT calculations (TPSSh model) performed in aqueous solution (PCM model) on the [Mn(MeNO2A)(H2O)]·xH2O and [Mn(EDTA)(H2O)](2-)·xH2O (x = 0-4) systems were used to determine theoretically the (17)O and (1)H HFCCs responsible for the (17)O NMR chemical shifts and the scalar contributions to (17)O and (1)H NMR relaxation rates. The use of a mixed cluster/continuum approach with the explicit inclusion of a few second-sphere water molecules is critical for an accurate calculation of HFCCs of coordinated water molecules. The impact of complex dynamics on the calculated HFCCs was evaluated with the use of molecular dynamics simulations within the atom-centered density matrix propagation (ADMP) approach. The (17)O and (1)H HFCCs calculated for these complexes and related systems show an excellent agreement with the experimental data. Both the (1)H and (17)O HFCCs (A(iso) values) are dominated by the spin delocalization mechanism. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Mn(2+) ion, as well as by the orientation of the water molecule plane with respect to the Mn-O vector.


Inorganic Chemistry | 2016

Magnetic Anisotropies in Rhombic Lanthanide(III) Complexes Do Not Conform to Bleaney’s Theory

Goretti Castro; Martín Regueiro-Figueroa; David Esteban-Gómez; Paulo Pérez-Lourido; Carlos Platas-Iglesias; Laura Valencia

We report a complete set of magnetic susceptibilities of lanthanide complexes with a macrocyclic ligand based on a 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane platform containing four hydroxyethyl pendant arms (L(1)). The [LnL(1)](3+) complexes are isostructural along the lanthanide series from Ce(3+) to Yb(3+), with the only structural change observed along the series being the monotonous shortening of the Ln-donor distances due to lanthanide contraction. The (1)H NMR spectra point to a D2 symmetry of the [LnL(1)](3+) complexes in aqueous solution, which provides a unique opportunity for analysis of the rhombic magnetic anisotropies with an unequivocal location of the magnetic axes. The contact contributions for the observed paramagnetic shifts have been estimated with density functional theory calculations on the [GdL(1)](3+) complex. Subsequently, the pseudocontact shifts could be factored out, thereby giving access to the axial and rhombic contributions of the magnetic susceptibility tensor. Our results show that the calculated magnetic anisotropies do not follow the trends predicted by Bleaneys theory, particularly in the case of Ho(3+) and Er(3+) complexes.

Collaboration


Dive into the David Esteban-Gómez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raphaël Tripier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurora Rodríguez-Rodríguez

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Éva Tóth

University of Orléans

View shared research outputs
Researchain Logo
Decentralizing Knowledge