Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David F. Gruber is active.

Publication


Featured researches published by David F. Gruber.


Soft robotics | 2016

Soft Robotic Grippers for Biological Sampling on Deep Reefs.

Kevin C. Galloway; Kaitlyn P. Becker; Brennan T. Phillips; Jordan Kirby; Stephen Licht; Dan Tchernov; Robert J. Wood; David F. Gruber

Abstract This article presents the development of an underwater gripper that utilizes soft robotics technology to delicately manipulate and sample fragile species on the deep reef. Existing solutions for deep sea robotic manipulation have historically been driven by the oil industry, resulting in destructive interactions with undersea life. Soft material robotics relies on compliant materials that are inherently impedance matched to natural environments and to soft or fragile organisms. We demonstrate design principles for soft robot end effectors, bench-top characterization of their grasping performance, and conclude by describing in situ testing at mesophotic depths. The result is the first use of soft robotics in the deep sea for the nondestructive sampling of benthic fauna.


Applied and Environmental Microbiology | 2006

Dynamics and Characterization of Refractory Dissolved Organic Matter Produced by a Pure Bacterial Culture in an Experimental Predator-Prey System

David F. Gruber; Jean-Paul Simjouw; Sybil P. Seitzinger; Gary L. Taghon

ABSTRACT We studied the effects of a bacterium (Pseudomonas chlororaphis) and a bactivorous protozoan (Uronema sp.) on transformations of labile dissolved organic carbon (DOC). In 36-day time series experiments, bacteria were grown on glucose both with and without protozoa. We measured bulk organic carbon pools and used electrospray ionization mass spectrometry to characterize dissolved organic matter on a molecular level. Bacteria rapidly utilized glucose, depleting it to nondetectable levels and producing new DOC compounds of higher molecular weight within 2 days. Some of these new compounds, representing 3 to 5% of the initial glucose-C, were refractory and persisted for over a month. Other new compounds were produced and subsequently used by bacteria during the lag and exponential growth phases, pointing to a dynamic cycling of organic compounds. Grazers caused a temporary spike in the DOC concentration consisting of labile compounds subsequently utilized by the bacteria. Grazing did not increase the complexity of the DOC pool already established by the bacteria but did continually decrease the particulate organic carbon pool and expedited the conversion of glucose-C to CO2. After 36 days, 29% of initial glucose-C remained in pure bacteria cultures, while only 6% remained in cultures where a grazer was present. In this study the bacteria were the primary shapers of the complex DOC continuum, suggesting higher trophic levels possibly have less of an impact on the qualitative composition of DOC than previously assumed.


PLOS ONE | 2014

The Covert World of Fish Biofluorescence: A Phylogenetically Widespread and Phenotypically Variable Phenomenon

John S. Sparks; Robert C. Schelly; W. Leo Smith; Matthew P. Davis; Dan Tchernov; Vincent A. Pieribone; David F. Gruber

The discovery of fluorescent proteins has revolutionized experimental biology. Whereas the majority of fluorescent proteins have been identified from cnidarians, recently several fluorescent proteins have been isolated across the animal tree of life. Here we show that biofluorescence is not only phylogenetically widespread, but is also phenotypically variable across both cartilaginous and bony fishes, highlighting its evolutionary history and the possibility for discovery of numerous novel fluorescent proteins. Fish biofluorescence is especially common and morphologically variable in cryptically patterned coral-reef lineages. We identified 16 orders, 50 families, 105 genera, and more than 180 species of biofluorescent fishes. We have also reconstructed our current understanding of the phylogenetic distribution of biofluorescence for ray-finned fishes. The presence of yellow long-pass intraocular filters in many biofluorescent fish lineages and the substantive color vision capabilities of coral-reef fishes suggest that they are capable of detecting fluoresced light. We present species-specific emission patterns among closely related species, indicating that biofluorescence potentially functions in intraspecific communication and evidence that fluorescence can be used for camouflage. This research provides insight into the distribution, evolution, and phenotypic variability of biofluorescence in marine lineages and examines the role this variation may play.


eLife | 2016

Comparative genomics explains the evolutionary success of reef-forming corals

Debashish Bhattacharya; Shobhit Agrawal; Manuel Aranda; Sebastian Baumgarten; Mahdi Belcaid; Jeana L. Drake; Douglas H. Erwin; Sylvain Forêt; Ruth D. Gates; David F. Gruber; Bishoy Kamel; Michael P. Lesser; Oren Levy; Yi Jin Liew; Matthew D. MacManes; Tali Mass; Mónica Medina; Shaadi Mehr; Eli Meyer; Dana C. Price; Hollie M. Putnam; Huan Qiu; Chuya Shinzato; Eiichi Shoguchi; Alexander J. Stokes; Sylvie Tambutté; Dan Tchernov; Christian R. Voolstra; Nicole E. Wagner; Charles W. Walker

Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years. DOI: http://dx.doi.org/10.7554/eLife.13288.001


Coral Reefs | 2011

Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef

O. Nir; David F. Gruber; Shai Einbinder; Salit Kark; Dan Tchernov

The algae living endosymbiotically within coral are thought to increase algal pigmentation with increasing depth to capture the diminishing light. Here, we follow distribution of the hermatypic coral Seriatopora hystrix along a 60-m bathymetric gradient in the Gulf of Eilat, Red Sea, to study coral ecophysiology and response to light regimes. Combining work on coral morphology, pigment content and genotyping of the photosymbiont, we found that total chlorophyll concentration per zooxanthellae cell and the dark- and light-acclimated quantum yield of photosystem II did not vary significantly along the 60-m gradient. However, the chlorophyll a/c ratio increased with depth. This suggests that the symbiotic algae in S. hystrix possess a mechanism for acclimatization or adaptation that differs from previously described pathways. The accepted photoacclimatory process involves an increase in chlorophyll content per alga as light intensity decreases. Based on corallite and branch morphology, this research suggests that S. hystrix has two depth-dependent ecophenotypes. Above 10 m depth, S. hystrix exhibits sturdier colony configurations with thick branches, while below 30 m depth, colonies are characterized by thin branches and the presence of a larger polyp area. Between 10 and 30 m depth, both ecophenotypes are present, suggesting that corallite morphology may act as another axis of photoacclimation with depth.


FEBS Journal | 2010

A new bright green-emitting fluorescent protein - engineered monomeric and dimeric forms

Robielyn P. Ilagan; Elizabeth Rhoades; David F. Gruber; Hung-Teh Kao; Vincent A. Pieribone; Lynne Regan

Fluorescent proteins have become essential tools in molecular and biological applications. Here, we present a novel fluorescent protein isolated from warm water coral, Cyphastrea microphthalma. The protein, which we named vivid Verde fluorescent protein (VFP), matures readily at 37 °C and emits bright green light. Further characterizations revealed that VFP has a tendency to form dimers. By creating a homology model of VFP, based on the structure of the red fluorescent protein, DsRed, we were able to make mutations that alter the protein’s oligomerization state. We present two proteins, mVFP and mVFP1, that are both exclusively monomeric, and one protein, dVFP, which is dimeric. We characterized the spectroscopic properties of VFP and its variants in comparison with enhanced green fluorescent protein (EGFP), a widely used variant of GFP. All the VFP variants are at least twice as bright as EGFP. Finally, we demonstrated the effectiveness of the VFP variants in both in vitro and in vivo detection applications.


The Biological Bulletin | 2008

Patterns of Fluorescent Protein Expression in Scleractinian Corals

David F. Gruber; Hung-Teh Kao; Stephen Janoschka; Julia Tsai; Vincent A. Pieribone

Biofluorescence exists in only a few classes of organisms, with Anthozoa possessing the majority of species known to express fluorescent proteins. Most species within the Anthozoan subgroup Scleractinia (reef-building corals) not only express green fluorescent proteins, they also localize the proteins in distinct anatomical patterns.We examined the distribution of biofluorescence in 33 coral species, representing 8 families, from study sites on Australias Great Barrier Reef. For 28 of these species, we report the presence of biofluorescence for the first time. The dominant fluorescent emissions observed were green (480–520 nm) and red (580–600 nm). Fluorescent proteins were expressed in three distinct patterns (highlighted, uniform, and complementary) among specific anatomical structures of corals across a variety of families. We report no significant overlap between the distribution of fluorescent proteins and the distribution of zooxanthellae. Analysis of the patterns of fluorescent protein distribution provides evidence that the scheme in which fluorescent proteins are distributed among the anatomical structures of corals is nonrandom. This targeted expression of fluorescent proteins in corals produces contrast and may function as a signaling mechanism to organisms with sensitivity to specific wavelengths of light.


BMC Genomics | 2013

Transcriptome deep-sequencing and clustering of expressed isoforms from Favia corals

Shaadi Mehr; Rob DeSalle; Hung-Teh Kao; Apurva Narechania; Zhou Han; Dan Tchernov; Vincent A. Pieribone; David F. Gruber

BackgroundGenomic and transcriptomic sequence data are essential tools for tackling ecological problems. Using an approach that combines next-generation sequencing, de novo transcriptome assembly, gene annotation and synthetic gene construction, we identify and cluster the protein families from Favia corals from the northern Red Sea.ResultsWe obtained 80 million 75 bp paired-end cDNA reads from two Favia adult samples collected at 65 m (Fav1, Fav2) on the Illumina GA platform, and generated two de novo assemblies using ABySS and CAP3. After removing redundancy and filtering out low quality reads, our transcriptome datasets contained 58,268 (Fav1) and 62,469 (Fav2) contigs longer than 100 bp, with N50 values of 1,665 bp and 1,439 bp, respectively. Using the proteome of the sea anemone Nematostella vectensis as a reference, we were able to annotate almost 20% of each dataset using reciprocal homology searches. Homologous clustering of these annotated transcripts allowed us to divide them into 7,186 (Fav1) and 6,862 (Fav2) homologous transcript clusters (E-value ≤ 2e-30). Functional annotation categories were assigned to homologous clusters using the functional annotation of Nematostella vectensis. General annotation of the assembled transcripts was improved 1-3% using the Acropora digitifera proteome. In addition, we screened these transcript isoform clusters for fluorescent proteins (FPs) homologs and identified seven potential FP homologs in Fav1, and four in Fav2. These transcripts were validated as bona fide FP transcripts via robust fluorescence heterologous expression. Annotation of the assembled contigs revealed that 1.34% and 1.61% (in Fav1 and Fav2, respectively) of the total assembled contigs likely originated from the corals’ algal symbiont, Symbiodinium spp.ConclusionsHere we present a study to identify the homologous transcript isoform clusters from the transcriptome of Favia corals using a far-related reference proteome. Furthermore, the symbiont-derived transcripts were isolated from the datasets and their contribution quantified. This is the first annotated transcriptome of the genus Favia, a major increase in genomics resources available in this important family of corals.


Marine Biotechnology | 2007

Dynamic Regulation of Fluorescent Proteins from a Single Species of Coral

Hung-Teh Kao; Shelby Sturgis; Rob DeSalle; Julia Tsai; Douglas J. Davis; David F. Gruber; Vincent A. Pieribone

To gain a better understanding of the natural function of fluorescent proteins, we have undertaken quantitative analyses of these proteins in a single species of coral, Montastraea cavernosa, residing around Turneffe atoll, on the Belizean Barrier Reef. We identified at least 10 members of a fluorescent protein family in this species, which consist of 4 distinct spectral classes. As much as a 10-fold change in the overall expression of fluorescent proteins was observed from specimen to specimen, suggesting that fluorescent proteins are dynamically regulated in response to environmental or physiological conditions. We found that the expression of some proteins was inversely correlated with depth, and that groups of proteins were coordinately expressed. There was no relationship between the expression of fluorescent proteins and the natural coloration of the Montastraea cavernosa specimens in this study. These findings have implications for current hypotheses regarding the properties and natural function of fluorescent proteins.


PLOS ONE | 2014

Seasonal Mesophotic Coral Bleaching of Stylophora pistillata in the Northern Red Sea

Orit Nir; David F. Gruber; Eli Shemesh; Eliezra Glasser; Dan Tchernov

Coral bleaching occurs when environmental stress induces breakdown of the coral-algae symbiosis and the host initiates algae expulsion. Two types of coral bleaching had been thoroughly discussed in the scientific literature; the first is primarily associated with mass coral bleaching events; the second is a seasonal loss of algae and/or pigments. Here, we describe a phenomenon that has been witnessed for repeated summers in the mesophotic zone (40–63 m) in the northern Red Sea: seasonal bleaching and recovery of several hermatypic coral species. In this study, we followed the recurring bleaching process of the common coral Stylophora pistillata. Bleaching occurred from April to September with a 66% decline in chlorophyll a concentration, while recovery began in October. Using aquarium and transplantation experiments, we explored environmental factors such as temperature, photon flux density and heterotrophic food availability. Our experiments and observations did not yield one single factor, alone, responsible for the seasonal bleaching. The dinoflagellate symbionts (of the genus Symbiodinium) in shallow (5 m) Stylophora pistillata were found to have a net photosynthetic rate of 56.98–92.19 µmol O2 cm−2 day−1. However, those from mesophotic depth (60 m) during months when they are not bleached are net consumers of oxygen having a net photosynthetic rate between −12.86 - (−10.24) µmol O2 cm−2 day−1. But during months when these mesophotic corals are partially-bleached, they yielded higher net production, between −2.83–0.76 µmol O2 cm−2 day−1. This study opens research questions as to why mesophotic zooxanthellae are more successfully meeting the corals metabolic requirements when Chl a concentration decreases by over 60% during summer and early fall.

Collaboration


Dive into the David F. Gruber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. Sparks

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean P. Gaffney

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob DeSalle

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Shaadi Mehr

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Aida Verdes

City University of New York

View shared research outputs
Researchain Logo
Decentralizing Knowledge