David F. Werner
Binghamton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David F. Werner.
Frontiers in Neuroscience | 2012
Sandeep Kumar; Qinglu Ren; Jonathon H. Beckley; Todd K. O'Buckley; Eduardo D. Gigante; Jessica L. Santerre; David F. Werner; A. Leslie Morrow
Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking, and synaptic excitability. Both protein kinase C (PKC) and A (PKA) are involved in regulation of γ-aminobutyric acid type A (GABAA) receptors through phosphorylation. However, the role of PKA in regulating GABAA receptors (GABAA-R) following acute ethanol exposure is not known. The present study investigated the role of PKA in the effects of ethanol on GABAA-R α1 subunit expression in rat cerebral cortical P2 synaptosomal fractions. Additionally, GABA-related behaviors were examined. Rats were administered ethanol (2.0–3.5 g/kg) or saline and PKC, PKA, and GABAA-R α1 subunit levels were measured by western blot analysis. Ethanol (3.5 g/kg) transiently increased GABAA-R α1 subunit expression and PKA RIIβ subunit expression at similar time points whereas PKA RIIα was increased at later time points. In contrast, PKC isoform expression remained unchanged. Notably, lower ethanol doses (2.0 g/kg) had no effect on GABAA-R α1 subunit levels, although PKA type II regulatory subunits RIIα and RIIβ were increased at 10 and 60 min when PKC isozymes are also known to be elevated. To determine if PKA activation was responsible for the ethanol-induced elevation of GABAA-R α1 subunits, the PKA antagonist H89 was administered to rats prior to ethanol exposure. H89 administration prevented ethanol-induced increases in GABAA-R α1 subunit expression. Moreover, increasing PKA activity intracerebroventricularly with Sp-cAMP prior to a hypnotic dose of ethanol increased ethanol-induced loss of righting reflex (LORR) duration. This effect appears to be mediated in part by GABAA-R as increasing PKA activity also increased the duration of muscimol-induced LORR. Overall, these data suggest that PKA mediates ethanol-induced GABAA-R expression and contributes to behavioral effects of ethanol involving GABAA-R.
The Journal of Neuroscience | 2014
Jason B. Cook; David F. Werner; Antoniette M. Maldonado-Devincci; Maggie N. Leonard; Kristen R. Fisher; Todd K. O'Buckley; Patrizia Porcu; Thomas J. McCown; Joyce Besheer; Clyde W. Hodge; A. Leslie Morrow
Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.
Psychopharmacology | 2014
Jessica L. Santerre; Eduardo D. Gigante; Justine D. Landin; David F. Werner
RationaleEthanol is commonly used and abused during adolescence. Although adolescents display differential behavioral responses to ethanol, the mechanisms by which this occurs are not known. The protein kinase C (PKC) pathway has been implicated in mediating many ethanol-related effects in adults, as well as gamma-aminobutyric acid (GABAA) receptor regulation.ObjectivesThe present study was designed to characterize cortical PKC isoform and GABAA receptor subunit expression during adolescence relative to adults as well as assess PKC involvement in ethanol action.ResultsNovel PKC isoforms were elevated, while PKCγ was lower during mid-adolescence relative to adults. Whole-cell lysate and synaptosomal preparations correlated for all isoforms except PKCδ. In parallel, synaptosomal GABAA receptor subunit expression was also developmentally regulated, with GABAAR δ and α4 being lower while α1 and γ2 were higher or similar, respectively, in adolescents compared to adults. Following acute ethanol exposure, synaptosomal novel and atypical PKC isoform expression was decreased only in adolescents. Behaviorally, inhibiting PKC with calphostin C, significantly increased ethanol-induced loss of righting reflex (LORR) in adolescents but not adults, whereas activating PKC with phorbol dibutyrate was ineffective in adolescents but decreased LORR duration in adults. Further investigation revealed that inhibiting the cytosolic phospholipase A2/arachidonic acid (cPLA2/AA) pathway increased LORR duration in adolescents, but was ineffective in adults.ConclusionsThese data indicate that PKC isoforms are variably regulated during adolescence and may contribute to adolescent ethanol-related behavior. Furthermore, age-related differences in the cPLA2/AA pathway may contribute to ethanol’s age-related effects on novel and atypical PKC isoform expression and behavior.
Behavioural Brain Research | 2012
Leticia S. Resende; Angela Maria Ribeiro; David F. Werner; Joseph M. Hall; Lisa M. Savage
The links between spatial behavior and hippocampal levels of synapsin I and phosphosynapsin I were assessed in normal rats and in the pyrithiamine-induced thiamine deficiency (PTD) rat model of Wernicke-Korsakoffs syndrome. Synapsin I tethers small synaptic vesicles to the actin cytoskeleton in a phosphorylation-dependent manner, is involved in neurotransmitter release and has been implicated in hippocampal-dependent learning. Positive correlations between spontaneous alternation behavior and hippocampal levels of both synapsin I and phosphorylated synapsin I were found in control rats. However, spontaneous alternation performance was impaired in PTD rats and was accompanied by a significant reduction (30%) in phosphorylated synapsin I. Furthermore, no correlations were observed between either form of synapsin I and behavior in PTD rats. These data suggest that successful spontaneous alternation performance is related to high levels of hippocampal synapsin I and phosphorylated synapsin I. These results not only support the previous findings that implicate impaired hippocampal neurotransmission in the spatial learning and memory deficits associated with thiamine deficiency, but also suggest a presynaptic mechanism.
Neuroscience | 2014
Jessica L. Santerre; Jackson A. Rogow; Ezra B. Kolitz; Rohit Pal; Justine D. Landin; Eduardo D. Gigante; David F. Werner
AMPA receptor GluA2 subunits are strongly implicated in cognition, and prior work suggests that these subunits may be regulated by atypical protein kinase C (aPKC) isoforms. The present study assessed whether hippocampal and cortical AMPA receptor GluA2 subunit regulation may be an underlying factor in known age-related differences to cognitive-impairing doses of ethanol, and if aPKC isoforms modulate such responses. Hippocampal AMPA receptor GluA2 subunit, protein kinase Mζ (PKMζ), and PKCι/λ expression were elevated during adolescence compared to adults. 1 h following a low-dose (1.0-g/kg) ethanol exposure, hippocampal AMPA receptor GluA2 subunit serine 880 phosphorylation was decreased in adolescents, but was increased in adults. Age-dependent changes in GluA2 subunit phosphorylation were paralleled by alterations in aPKC isoforms, and zeta inhibitory peptide (ZIP) administration prevented ethanol-induced increases in both in adults. Ethanol-induced changes in GluA2 subunit phosphorylation were associated with delayed regulation in synaptosomal GluA2 subunit expression 24 h later. A higher ethanol dose (3.5-g/kg) failed to elicit changes in most measures in the hippocampus at either age. Similar to the hippocampus, analysis of cerebral cortical tissue also revealed age-related declines. However, no demonstrable effects were found following a low-dose ethanol exposure at either age. High-dose ethanol exposure reduced adolescent GluA2 subunit phosphorylation and aPKC isoform expression that were again accompanied by delayed reductions in synaptosomal GluA2 subunit expression. Together, these results suggest that GluA2-containing AMPA receptor modulation by aPKC isoforms is age-, region- and dose-dependently regulated, and may potentially be involved in developmentally regulated ethanol-induced cognitive impairment and other ethanol behaviors.
Neuropharmacology | 2017
K.R. Przybysz; David F. Werner; M.R. Diaz
&NA; Anxiety disorders are one of the most common and debilitating mental illnesses worldwide. Growing evidence indicates an age‐dependent rise in the incidence of anxiety disorders from adolescence through adulthood, suggestive of underlying neurodevelopmental mechanisms. Kappa opioid receptors (KORs) are known to contribute to the development and expression of anxiety; however, the functional role of KORs in the basolateral amygdala (BLA), a brain structure critical in mediating anxiety, particularly across ontogeny, are unknown. Using whole‐cell patch‐clamp electrophysiology in acute brain slices from adolescent (postnatal day (P) 30–45) and adult (P60+) male Sprague‐Dawley rats, we found that the KOR agonist, U69593, increased the frequency of GABAA‐mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in the adolescent BLA, without an effect in the adult BLA or on sIPSC amplitude at either age. The KOR effect was blocked by the KOR antagonist, nor‐BNI, which alone did not alter GABA transmission at either age, and the effect of the KOR agonist was TTX‐sensitive. Additionally, KOR activation did not alter glutamatergic transmission in the BLA at either age. In contrast, U69593 inhibited sIPSC frequency in the central amygdala (CeA) at both ages, without altering sIPSC amplitude. Western blot analysis of KOR expression indicated that KOR levels were not different between the two ages in either the BLA or CeA. This is the first study to provide compelling evidence for a novel and unique neuromodulatory switch in one of the primary brain regions involved in initiating and mediating anxiety that may contribute to the ontogenic rise in anxiety disorders. HighlightsIncidence of anxiety disorders increases from adolescence into adulthood.Kappa opioid receptors (KORs) are involved in anxiety.KORs increase GABA transmission in the BLA of adolescent, but not adults.KORs decrease GABA transmission in the adolescent and adult CeA.Age‐dependent switch in BLA KOR function may contribute to anxiety disorders.
Neurochemical Research | 2015
Jessica L. Santerre; E. B. Kolitz; R. Pal; J. A. Rogow; David F. Werner
Ethanol consumption typically begins during adolescence, a developmental period which exhibits many age-dependent differences in ethanol behavioral sensitivity. Protein kinase C (PKC) activity is largely implicated in ethanol-behaviors, and our previous work indicates that regulation of novel PKC isoforms likely contributes to decreased high-dose ethanol sensitivity during adolescence. The cytoplasmic Phospholipase A2 (cPLA2) signaling cascade selectivity modulates novel and atypical PKC isoform activity, as well as adolescent ethanol hypnotic sensitivity. Therefore, the current study was designed to ascertain adolescent cPLA2 activity both basally and in response to ethanol, as well as it’s involvement in ethanol-induced PKC isoform translocation patterns. cPLA2 expression was elevated during adolescence, and activity was increased only in adolescents following high-dose ethanol administration. Novel, but not atypical PKC isoforms translocate to cytosolic regions following high-dose ethanol administration. Inhibiting cPLA2 with AACOCF3 blocked ethanol-induced PKC cytosolic translocation. Finally, inhibition of novel, but not atypical, PKC isoforms when cPLA2 activity was elevated, modulated adolescent high-dose ethanol-sensitivity. These data suggest that the cPLA2/PKC pathway contributes to the acute behavioral effects of ethanol during adolescence.
Alcoholism: Clinical and Experimental Research | 2014
Michael E. Nizhnikov; Ricardo Marcos Pautassi; Jenna M. Carter; Justine D. Landin; Elena I. Varlinskaya; Kelly A. Bordner; David F. Werner; Norman E. Spear
Neuropharmacology | 2016
Melissa M. Conti; Samantha Meadows; Mitchell Melikhov-Sosin; David Lindenbach; Joy Hallmark; David F. Werner; Christopher Bishop
Neuropharmacology | 2016
A. Suryanarayanan; J.M. Carter; J.D. Landin; A.L. Morrow; David F. Werner; Igor Spigelman
Collaboration
Dive into the David F. Werner's collaboration.
Antoniette M. Maldonado-Devincci
University of North Carolina at Chapel Hill
View shared research outputs