Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David G. Gilbank is active.

Publication


Featured researches published by David G. Gilbank.


The Astrophysical Journal | 2012

The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z > 1 and Building an Early-type-hosted Supernova Sample

Nao Suzuki; D. Rubin; C. Lidman; Gregory Scott Aldering; R. Amanullah; K. Barbary; L. F. Barrientos; J. Botyánszki; Mark Brodwin; Natalia Connolly; Kyle S. Dawson; Arjun Dey; Mamoru Doi; Megan Donahue; Susana Elizabeth Deustua; Peter R. M. Eisenhardt; Erica Ellingson; L. Faccioli; V. Fadeyev; H. K. Fakhouri; Andrew S. Fruchter; David G. Gilbank; Michael D. Gladders; G. Goldhaber; Anthony H. Gonzalez; Ariel Goobar; A. Gude; T. Hattori; Henk Hoekstra; E. Y. Hsiao

We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.


Monthly Notices of the Royal Astronomical Society | 2011

The WiggleZ Dark Energy Survey: mapping the distance–redshift relation with baryon acoustic oscillations

Chris Blake; Eyal A. Kazin; Florian Beutler; Tamara M. Davis; David Parkinson; Sarah Brough; Matthew Colless; Carlos Contreras; Warrick J. Couch; Scott M. Croom; Darren J. Croton; Michael J. Drinkwater; Karl Forster; David G. Gilbank; Michael D. Gladders; Karl Glazebrook; Ben Jelliffe; Russell J. Jurek; I-hui Li; Barry F. Madore; D. Christopher Martin; Kevin A. Pimbblet; Gregory B. Poole; Michael Pracy; Rob Sharp; Emily Wisnioski; David Woods; Ted K. Wyder; H. K. C. Yee

We present measurements of the baryon acoustic peak at redshifts z = 0.44, 0.6 and 0.73 in the galaxy correlation function of the final dataset of the WiggleZ Dark Energy Survey. We combine our correlation function with lower-redshift measurements from the 6-degree Field Galaxy Survey and Sloan Digital Sky Survey, producing a stacked survey correlation function in which the statistical significance of the detection of the baryon acoustic peak is 4.9-σ relative to a zero-baryon model with no peak. We fit cosmological models to this combined baryon acoustic oscillation (BAO) dataset comprising six distance-redshift data points, and compare the results to similar fits to the latest compilation of supernovae (SNe) and Cosmic Microwave Background (CMB) data. The BAO and SNe datasets produce consistent measurements of the equation-ofstate w of dark energy, when separately combined with the CMB, providing a powerful check for systematic errors in either of these distance probes. Combining all datasets we determine w = 1.03 ± 0.08 for a flat Universe, consistent with a cosmological constant model. Assuming dark energy is a cosmological constant and varying the spatial curvature, we find k = 0.004± 0.006.


Monthly Notices of the Royal Astronomical Society | 2012

The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1

Chris Blake; Sarah Brough; Matthew Colless; Carlos Contreras; Warrick J. Couch; Scott M. Croom; Darren J. Croton; Tamara M. Davis; Michael J. Drinkwater; Karl Forster; David G. Gilbank; Michael D. Gladders; Karl Glazebrook; Ben Jelliffe; Russell J. Jurek; I-hui Li; Barry F. Madore; D. Christopher Martin; Kevin A. Pimbblet; Gregory B. Poole; Michael Pracy; Rob Sharp; Emily Wisnioski; David Woods; Ted K. Wyder; H. K. C. Yee

We perform a joint determination of the distance–redshift relation and cosmic expansion rate at redshifts z = 0.44, 0.6 and 0.73 by combining measurements of the baryon acoustic peak and Alcock–Paczynski distortion from galaxy clustering in the WiggleZ Dark Energy Survey, using a large ensemble of mock catalogues to calculate the covariance between the measurements. We find that D_A(z) = (1205 ± 114, 1380 ± 95, 1534 ± 107) Mpc and H(z) = (82.6 ± 7.8, 87.9 ± 6.1, 97.3 ± 7.0) km s^(−1) Mpc^(−1) at these three redshifts. Further combining our results with other baryon acoustic oscillation and distant supernovae data sets, we use a Monte Carlo Markov Chain technique to determine the evolution of the Hubble parameter H(z) as a stepwise function in nine redshift bins of width Δz = 0.1, also marginalizing over the spatial curvature. Our measurements of H(z), which have precision better than 7 per cent in most redshift bins, are consistent with the expansion history predicted by a cosmological constant dark energy model, in which the expansion rate accelerates at redshift z < 0.7.


Monthly Notices of the Royal Astronomical Society | 2010

The WiggleZ Dark Energy Survey: survey design and first data release

Michael J. Drinkwater; Russell J. Jurek; Chris Blake; David Woods; Kevin A. Pimbblet; Karl Glazebrook; Rob Sharp; Michael Pracy; Sarah Brough; Matthew Colless; Warrick J. Couch; Scott M. Croom; Tamara M. Davis; Duncan A. Forbes; Karl Forster; David G. Gilbank; Michael D. Gladders; Ben Jelliffe; N. T. Jones; I-hui Li; Barry F. Madore; D. Christopher Martin; Gregory B. Poole; Todd Small; Emily Wisnioski; Ted K. Wyder; H. K. C. Yee

The WiggleZ Dark Energy Survey is a survey of 240 000 emission-line galaxies in the distant Universe, measured with the AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope (AAT). The primary aim of the survey is to precisely measure the scale of baryon acoustic oscillations (BAO) imprinted on the spatial distribution of these galaxies at look-back times of 4–8 Gyr. The target galaxies are selected using ultraviolet (UV) photometry from the Galaxy Evolution Explorer satellite, with a flux limit of NUV < 22.8 mag . We also require that the targets are detected at optical wavelengths, specifically in the range 20.0 < r < 22.5 mag . We use the Lyman break method applied to the UV colours, with additional optical colour limits, to select high-redshift galaxies. The galaxies generally have strong emission lines, permitting reliable redshift measurements in relatively short exposure times on the AAT. The median redshift of the galaxies is z_(med)= 0.6 . The redshift range containing 90 per cent of the galaxies is 0.2 < z < 1.0 . The survey will sample a volume of ~1 Gpc^3 over a projected area on the sky of 1000 deg^2, with an average target density of 350 deg^(−2). Detailed forecasts indicate that the survey will measure the BAO scale to better than 2 per cent and the tangential and radial acoustic wave scales to approximately 3 and 5 per cent, respectively. Combining the WiggleZ constraints with existing cosmic microwave background measurements and the latest supernova data, the marginalized uncertainties in the cosmological model are expected to be σ(Ω_m) = 0.02 and σ(w) = 0.07 (for a constant w model). The WiggleZ measurement of w will constitute a robust, precise and independent test of dark energy models. This paper provides a detailed description of the survey and its design, as well as the spectroscopic observations, data reduction and redshift measurement techniques employed. It also presents an analysis of the properties of the target galaxies, including emission-line diagnostics which show that they are mostly extreme starburst galaxies, and Hubble Space Telescope images, which show that they contain a high fraction of interacting or distorted systems. In conjunction with this paper, we make a public data release of data for the first 100 000 galaxies measured for the project.


Monthly Notices of the Royal Astronomical Society | 2002

Deep radio imaging of the SCUBA 8‐mJy survey fields: submillimetre source identifications and redshift distribution

R. J. Ivison; T. R. Greve; Ian Smail; James Dunlop; Nathan D. Roche; S. E. Scott; Mat J. Page; J. A. Stevens; Omar Almaini; A. W. Blain; Chris J. Willott; M. Fox; David G. Gilbank; Steve Serjeant; David Hughes

The SCUBA 8-mJy survey is the largest submillimetre (submm) extragalactic mapping survey undertaken to date, covering 260arcmin 2 to a 4� detection limit of ≃8mJy at 850µm, centred on the Lockman Hole and ELAIS N2 regions. Here, we present the results of new 1.4-GHz imaging of these fields, of the depth and resolution necessary to reliably identify radio counterparts for 18 of 30 submm sources, with possible detections of a further 25 per cent. Armed with this greatly improved positional information, we present and analyse new optical, near-infrared (IR) and XMM-Newton X-ray imaging to identify optical/IR host galaxies to half of the submm-selected sources in those fields. As many as 15 per cent of the submm sources detected at 1.4GHz are resolved by the 1.4 ′′ beam and a further 25 per cent have more than one radio counterpart, suggesting that radio and submm emission arise from extended starbursts and that interactions are common. We note that less than a quarter of the submm-selected sample would have been recovered by targeting optically faint radio sources, underlining the selective nature of such surveys. At least 60 per cent of the radio-confirmed optical/IR host galaxies appear to be morphologically distorted; many are composite systems — red galaxies with relatively blue companions; just over one half are found to be very red (I −K > 3.3) or extremely red (I −K > 4); contrary to popular belief, most are sufficiently bright to be tackled with spectrographson 8-m telescopes. We find one submm source which is associated with the steep-spectrum lobe of a radio galaxy, at least two more with flatter radio spectra typical of radio-loud active galactic nuclei (AGN), one of them variable. The latter is amongst four sources (≡15 per cent of the full sample) with X-ray emission consistent with obscured AGN, though the AGN would need to be Compton thick to power the observed far-IR luminosity. We exploit our well-matched radio and submm data to estimate the median redshift of the S850µm ∼8mJy submm galaxy population. If the radio/far-IR correlation holds at high redshift, and our sample is unbiased, we derive a conservative limit of ≥2.0, or ≥2.4 using spectral templates more representative of known submm galaxies.


Monthly Notices of the Royal Astronomical Society | 2011

The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9

Chris Blake; Sarah Brough; Matthew Colless; Carlos Contreras; Warrick J. Couch; Scott M. Croom; Tamara M. Davis; Michael J. Drinkwater; Karl Forster; David G. Gilbank; Michael D. Gladders; Karl Glazebrook; Ben Jelliffe; Russell J. Jurek; I-hui Li; Barry F. Madore; D. Christopher Martin; Kevin A. Pimbblet; Gregory B. Poole; Michael Pracy; Rob Sharp; Emily Wisnioski; David Woods; Ted K. Wyder; H. K. C. Yee

We present precise measurements of the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a precision of around 10 per cent in four independent redshift bins, are well fitted by a flat Λ cold dark matter (ΛCDM) cosmological model with matter density parameter Ω_m = 0.27. Our analysis hence indicates that this model provides a self-consistent description of the growth of cosmic structure through large-scale perturbations and the homogeneous cosmic expansion mapped by supernovae and baryon acoustic oscillations. We achieve robust results by systematically comparing our data with several different models of the quasi-linear growth of structure including empirical models, fitting formulae calibrated to N-body simulations, and perturbation theory techniques. We extract the first measurements of the power spectrum of the velocity divergence field, P_(θθ) (k), as a function of redshift (under the assumption that P_(gθ) (k) = − √P_(gg)(k)P_(θθ) (k), where g is the galaxy overdensity field), and demonstrate that the WiggleZ galaxy–mass cross-correlation is consistent with a deterministic (rather than stochastic) scale-independent bias model for WiggleZ galaxies for scales k < 0.3 h Mpc^(−1). Measurements of the cosmic growth rate from the WiggleZ Survey and other current and future observations offer a powerful test of the physical nature of dark energy that is complementary to distance–redshift measures such as supernovae and baryon acoustic oscillations.


Monthly Notices of the Royal Astronomical Society | 2011

The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z= 0.6

Chris Blake; Tamara M. Davis; Gregory B. Poole; David Parkinson; Sarah Brough; Matthew Colless; Carlos Contreras; Warrick J. Couch; Scott M. Croom; Michael J. Drinkwater; Karl Forster; David G. Gilbank; Michael D. Gladders; Karl Glazebrook; Ben Jelliffe; Russell J. Jurek; I-hui Li; Barry F. Madore; D. Christopher Martin; Kevin A. Pimbblet; Michael Pracy; Rob Sharp; Emily Wisnioski; David Woods; Ted K. Wyder; H. K. C. Yee

We measure the imprint of baryon acoustic oscillations (BAOs) in the galaxy clustering pattern at the highest redshift achieved to date, z= 0.6, using the distribution of N= 132 509 emission-line galaxies in the WiggleZ Dark Energy Survey. We quantify BAOs using three statistics: the galaxy correlation function, power spectrum and the band-filtered estimator introduced by Xu et al. The results are mutually consistent, corresponding to a 4.0 per cent measurement of the cosmic distance–redshift relation at z= 0.6 [in terms of the acoustic parameter ‘A(z)’ introduced by Eisenstein et al., we find A(z= 0.6) = 0.452 ± 0.018]. Both BAOs and power spectrum shape information contribute towards these constraints. The statistical significance of the detection of the acoustic peak in the correlation function, relative to a wiggle-free model, is 3.2σ. The ratios of our distance measurements to those obtained using BAOs in the distribution of luminous red galaxies at redshifts z= 0.2 and 0.35 are consistent with a flat Λ cold dark matter model that also provides a good fit to the pattern of observed fluctuations in the cosmic microwave background radiation. The addition of the current WiggleZ data results in a ≈30 per cent improvement in the measurement accuracy of a constant equation of state, w, using BAO data alone. Based solely on geometric BAO distance ratios, accelerating expansion (w < −1/3) is required with a probability of 99.8 per cent, providing a consistency check of conclusions based on supernovae observations. Further improvements in cosmological constraints will result when the WiggleZ survey data set is complete.


Physical Review D | 2012

The WiggleZ Dark Energy Survey: Final data release and cosmological results

David Parkinson; Signe Riemer-Sørensen; Chris Blake; Gregory B. Poole; Tamara M. Davis; Sarah Brough; Matthew Colless; Carlos Contreras; Warrick J. Couch; Scott M. Croom; Darren J. Croton; Michael J. Drinkwater; Karl Forster; David G. Gilbank; Michael D. Gladders; Karl Glazebrook; Ben Jelliffe; Russell J. Jurek; I-hui Li; Barry F. Madore; D. Christopher Martin; Kevin A. Pimbblet; Michael Pracy; Rob Sharp; Emily Wisnioski; David Woods; Ted K. Wyder; H. K. C. Yee

This paper presents cosmological results from the final data release of the WiggleZ Dark Energy Survey. We perform full analyses of different cosmological models using the WiggleZ power spectra measured at z=0.22, 0.41, 0.60, and 0.78, combined with other cosmological data sets. The limiting factor in this analysis is the theoretical modeling of the galaxy power spectrum, including nonlinearities, galaxy bias, and redshift-space distortions. In this paper we assess several different methods for modeling the theoretical power spectrum, testing them against the Gigaparsec WiggleZ simulations (GiggleZ). We fit for a base set of six cosmological parameters, {Ω_(b)h^2,Ω_(CDM)h^2,H_0,τ,A_s,n_s}, and five supplementary parameters {n_(run),r,w,Ω_k,∑m_ν}. In combination with the cosmic microwave background, our results are consistent with the ΛCDM concordance cosmology, with a measurement of the matter density of Ωm=0.29±0.016 and amplitude of fluctuations σ_8=0.825±0.017. Using WiggleZ data with cosmic microwave background and other distance and matter power spectra data, we find no evidence for any of the extension parameters being inconsistent with their ΛCDM model values. The power spectra data and theoretical modeling tools are available for use as a module for CosmoMC, which we here make publicly available at http://smp.uq.edu.au/wigglez-data. We also release the data and random catalogs used to construct the baryon acoustic oscillation correlation function.


Monthly Notices of the Royal Astronomical Society | 2014

The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature

Eyal A. Kazin; Jun Koda; Chris Blake; Nikhil Padmanabhan; Sarah Brough; Matthew Colless; Carlos Contreras; Warrick J. Couch; Scott M. Croom; Darren J. Croton; Tamara M. Davis; Michael J. Drinkwater; Karl Forster; David G. Gilbank; Michael D. Gladders; Karl Glazebrook; Ben Jelliffe; Russell J. Jurek; I-hui Li; Barry F. Madore; D. Christopher Martin; Kevin A. Pimbblet; Gregory B. Poole; Michael Pracy; Rob Sharp; Emily Wisnioski; David Woods; Ted K. Wyder; H. K. C. Yee

We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2 < z < 1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model-independent distance measures D_V(r_s^(fid)/r_s) of 1716 ± 83, 2221 ± 101, 2516 ± 86 Mpc (68 per cent CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where D_V is the volume-averaged distance, and r_s is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 per cent accuracy measurements are equivalent to those expected from surveys with up to 2.5 times the volume of WiggleZ without reconstruction applied. These measurements are fully consistent with cosmologies allowed by the analyses of the Planck Collaboration and the Sloan Digital Sky Survey. We provide the D_V(r_s^(fid)/r_s) posterior probability distributions and their covariances. When combining these measurements with temperature fluctuations measurements of Planck, the polarization of Wilkinson Microwave Anisotropy Probe 9, and the 6dF Galaxy Survey baryonic acoustic feature, we do not detect deviations from a flat Λ cold dark matter (ΛCDM) model. Assuming this model, we constrain the current expansion rate to H_0 = 67.15 ± 0.98 km s^(−1)Mpc^(−1). Allowing the equation of state of dark energy to vary, we obtain w_(DE) = −1.080 ± 0.135. When assuming a curved ΛCDM model we obtain a curvature value of Ω_K = −0.0043 ± 0.0047.


Monthly Notices of the Royal Astronomical Society | 2011

The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae

Chris Blake; Karl Glazebrook; Tamara M. Davis; Sarah Brough; Matthew Colless; Carlos Contreras; Warrick J. Couch; Scott M. Croom; Michael J. Drinkwater; Karl Forster; David G. Gilbank; Michael D. Gladders; Ben Jelliffe; Russell J. Jurek; I-hui Li; Barry F. Madore; D. Christopher Martin; Kevin A. Pimbblet; Gregory B. Poole; Michael Pracy; Rob Sharp; Emily Wisnioski; David Woods; Ted K. Wyder; H. K. C. Yee

Astronomical observations suggest that today’s Universe is dominated by a dark energy of unknown physical origin. One of the most notable results obtained from many models is that dark energy should cause the expansion of the Universe to accelerate: but the expansion rate as a function of time has proved very difficult to measure directly. We present a new determination of the cosmic expansion history by combining distant supernovae observations with a geometrical analysis of large-scale galaxy clustering within the WiggleZ Dark Energy Survey, using the Alcock–Paczynski test to measure the distortion of standard spheres. Our result constitutes a robust and non-parametric measurement of the Hubble expansion rate as a function of time, which we measure with 10–15 per cent precision in four bins within the redshift range 0.1 < z < 0.9. We demonstrate, in a manner insensitive to the assumed cosmological model, that the cosmic expansion is accelerating. Furthermore, we find that this expansion history is consistent with a cosmological-constant dark energy.

Collaboration


Dive into the David G. Gilbank's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erica Ellingson

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

I-hui Li

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Warrick J. Couch

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar

Karl Forster

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russell J. Jurek

Australia Telescope National Facility

View shared research outputs
Researchain Logo
Decentralizing Knowledge