Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David G. Jones is active.

Publication


Featured researches published by David G. Jones.


Frontiers in Cellular Neuroscience | 2010

Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan

Joshua G.A. Pinto; Kyle R. Hornby; David G. Jones; Kathryn M. Murphy

Functional maturation of visual cortex is linked with dynamic changes in synaptic expression of GABAergic mechanisms. These include setting the excitation–inhibition balance required for experience-dependent plasticity, as well as, intracortical inhibition underlying development and aging of receptive field properties. Animal studies have shown that there is developmental regulation of GABAergic mechanisms in visual cortex. In this study, we show for the first time how these mechanisms develop in the human visual cortex across the lifespan. We used Western blot analysis of postmortem tissue from human primary visual cortex (n = 30, range: 20 days to 80 years) to quantify expression of eight pre- and post-synaptic GABAergic markers. We quantified the inhibitory modulating cannabinoid receptor (CB1), GABA vesicular transporter (VGAT), GABA synthesizing enzymes (GAD65/GAD67), GABAA receptor anchoring protein (Gephyrin), and GABAA receptor subunits (GABAAα1, GABAAα2, GABAAα3). We found a complex pattern of different developmental trajectories, many of which were prolonged and continued well into the teen, young adult, and even older adult years. These included a monotonic increase or decrease (GABAAα1, GABAAα2), a biphasic increase then decrease (GAD65, Gephyrin), or multiple increases and decreases (VGAT, CB1) across the lifespan. Comparing the balances between the pre- and post-synaptic markers we found three main transition stages (early childhood, early teen years, aging) when there were rapid switches in the composition of the GABAergic signaling system, indicating that functioning of the GABAergic system must change as the visual cortex develops and ages. Furthermore, these results provide key information for translating therapies developed in animal models into effective treatments for amblyopia in humans.


The Journal of Neuroscience | 1995

Cytochrome-oxidase blobs in cat primary visual cortex

Kathryn M. Murphy; David G. Jones; Rc Van Sluyters

Cytochrome-oxidase blobs are central to two of the most influential ideas in contemporary visual neuroscience--cortical modularity and parallel processing pathways. In particular, the regular 2D array of cytochrome-oxidase-rich blobs in primate visual cortex is arguably the most compelling evidence for cortical modularity and has been hypothesized to mark a separate processing stream through the visual cortex. Although previously a variety of mammals have been studied, blobs have only been demonstrated in the visual cortex of primates, which has led to the conclusion that blobs represent a primate-specific feature of visual cortical organization. Here we demonstrate the presence of cytochrome-oxidase blobs in a nonprimate species. Throughout the full tangential extent of layers II-III in cat visual cortex the cytochrome-oxidase staining pattern is distinctly patchy, with the darkly stained blobs forming a regular 2D array. In addition, the blobs in cat visual cortex are functionally related to the underlying ocular dominance columns. The presence of cytochrome-oxidase blobs in the cat clearly demonstrates that they no longer can be considered a primate-specific feature of visual cortical organization.


Visual Neuroscience | 1998

Analysis of the postnatal growth of visual cortex

Kevin R. Duffy; Kathryn M. Murphy; David G. Jones

Development and growth of V1 begins during embryogenesis and continues postnatally. The growth of V1 has direct implications on the organization of features such as the retinotopic map and the pattern of visual cortical columns. We have examined the postnatal growth and two-dimensional shape of V1 in macaque monkeys, cats, and rats. The perimeter, area, and anterior-posterior length of V1 were measured from unfolded and flattened sections from neonatal and adult animals from each of these species. Although there were substantial differences in the overall amount of postnatal growth, from 18% in macaque monkeys to more than 100% in cats, in all three species the shape of V1 did not change during development. Thus, growth of the mammalian visual cortex is well described as an isotropic expansion, so the layout of the global features, such as the arrangement of ocular dominance columns and the retinotopic map, does not need to change during development. Furthermore, quantification of the shape confirms the observations that there is a similar, egg-like oval shape to the visual cortex of these mammalian species.


Frontiers in Synaptic Neuroscience | 2010

Experience-Dependent Changes in Excitatory and Inhibitory Receptor Subunit Expression in Visual Cortex

Brett R. Beston; David G. Jones; Kathryn M. Murphy

Experience-dependent development of visual cortex depends on the balance between excitatory and inhibitory activity. This activity is regulated by key excitatory (NMDA, AMPA) and inhibitory (GABAA) receptors. The composition of these receptors changes developmentally, affecting the excitatory–inhibitory (E/I) balance and synaptic plasticity. Until now, it has been unclear how abnormal visual experience affects this balance. To examine this question, we measured developmental changes in excitatory and inhibitory receptor subunits in visual cortex following normal visual experience and monocular deprivation. We used Western blot analysis to quantify expression of excitatory (NR1, NR2A, NR2B, GluR2) and inhibitory (GABAAα1, GABAAα3) receptor subunits. Monocular deprivation promoted a complex pattern of changes in receptor subunit expression that varied with age and was most severe in the region of visual cortex representing the central visual field. To characterize the multidimensional pattern of experience-dependent change in these synaptic mechanisms, we applied a neuroinformatics approach using principal component analysis. We found that monocular deprivation (i) causes a large portion of the normal developmental trajectory to be bypassed, (ii) shifts the E/I balance in favor of more inhibition, and (iii) accelerates the maturation of receptor subunits. Taken together, these results show that monocularly deprived animals have an abnormal balance of the synaptic machinery needed for functional maturation of cortical circuits and for developmental plasticity. This raises the possibility that interventions intended to treat amblyopia may need to address multiple synaptic mechanisms to produce optimal recovery.


Vision Research | 2003

Orientation discrimination in visual noise using global and local stimuli.

David G. Jones; Nicole D. Anderson; Kathryn M. Murphy

We have investigated orientation discrimination in visual noise using two types of high contrast, broadband stimuli. Discrimination thresholds are better for Local stimuli, in which the orientation signal is spatially limited, than for Global stimuli, in which the orientation signal extends across the entire stimulus. Performance improves with increasing stimulus area, reaching an optimum threshold of about 11% orientation signal. Thresholds were not influenced by brief presentation times or practice. These results, along with results from a simple computational model, suggest that human orientation discrimination for this kind of pattern is mediated by pooling local responses of low-level neural mechanisms and is limited by two stages of intrinsic neural noise.


Frontiers in Neural Circuits | 2013

Comparing development of synaptic proteins in rat visual, somatosensory, and frontal cortex

Joshua G.A. Pinto; David G. Jones; Kathryn M. Murphy

Two theories have influenced our understanding of cortical development: the integrated network theory, where synaptic development is coordinated across areas; and the cascade theory, where the cortex develops in a wave-like manner from sensory to non-sensory areas. These different views on cortical development raise challenges for current studies aimed at comparing detailed maturation of the connectome among cortical areas. We have taken a different approach to compare synaptic development in rat visual, somatosensory, and frontal cortex by measuring expression of pre-synaptic (synapsin and synaptophysin) proteins that regulate vesicle cycling, and post-synaptic density (PSD-95 and Gephyrin) proteins that anchor excitatory or inhibitory (E-I) receptors. We also compared development of the balances between the pairs of pre- or post-synaptic proteins, and the overall pre- to post-synaptic balance, to address functional maturation and emergence of the E-I balance. We found that development of the individual proteins and the post-synaptic index overlapped among the three cortical areas, but the pre-synaptic index matured later in frontal cortex. Finally, we applied a neuroinformatics approach using principal component analysis and found that three components captured development of the synaptic proteins. The first component accounted for 64% of the variance in protein expression and reflected total protein expression, which overlapped among the three cortical areas. The second component was gephyrin and the E-I balance, it emerged as sequential waves starting in somatosensory, then frontal, and finally visual cortex. The third component was the balance between pre- and post-synaptic proteins, and this followed a different developmental trajectory in somatosensory cortex. Together, these results give the most support to an integrated network of synaptic development, but also highlight more complex patterns of development that vary in timing and end point among the cortical areas.


Frontiers in Aging Neuroscience | 2010

Dramatic loss of Ube3A expression during aging of the mammalian cortex

Kate Williams; David A. Irwin; David G. Jones; Kathryn M. Murphy

Neurobiological studies of aging are beginning to link functional changes with a loss of experience-dependent plasticity. In the visual system, age-related functional changes include decreases in visual acuity, orientation selectivity, motion perception, and ocular dominance plasticity. A recent paper has shown that Ube3A, an E3 ubiquitin ligase that is absent in Angelmans syndrome, is required for experience-dependent plasticity during development of the visual cortex. Knocking out Ube3A during development leads to rigidity of ocular dominance plasticity that is strikingly similar to the reduced plasticity seen in older animals. Furthermore, ubiquitin ligases have been linked with age-related neurodegenerative disorders and longevity. Ubiquitin ligases selectively mark proteins for degradation, and a balance between synaptic proteins and their degradation is important for neural transmission and plasticity. This led us to ask whether normal aging is characterized by a loss of Ube3A in the cortex. We used Western blot analysis in order to quantify Ube3A expression across the life span of humans, macaque monkeys, and cats. We found that Ube3A expression declines across the lifespan in human, monkey, and cat cortex. The losses were substantial (50–80%) in all areas studied which includes V1, V3, V4, frontal, and auditory cortex. In addition, when compared with other synaptic proteins there was a selective loss of Ube3A in human cortex. The progressive loss of Ube3A expression during cortical aging is an important new finding. Furthermore, the selective loss of Ube3A in human cortex highlights a specific vulnerability in human brain aging that may signify a dramatic shift in cortical function and plasticity.


Frontiers in Neural Circuits | 2015

Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

Joshua G.A. Pinto; David G. Jones; C. Kate Williams; Kathryn M. Murphy

Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (<1 year) when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the 1 year or 2 of life. A multidimensional analysis (principle component analysis) showed that most of the variance was captured by the sum of the four synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.


Visual Neuroscience | 2004

Experience-dependent changes in NMDAR1 expression in the visual cortex of an animal model for amblyopia.

Kathryn M. Murphy; Kevin R. Duffy; David G. Jones

When normal binocular visual experience is disrupted during postnatal development, it affects the maturation of cortical circuits and often results in the development of poor visual acuity known as amblyopia. Two main factors contribute to the development of amblyopia: visual deprivation and reduced binocular competition. We investigated the affect of these two amblyogenic factors on the expression of the NMDAR1 subunit in the visual cortex because activation of the NMDA receptor is a key mechanism of developmental neural plasticity. We found that disruption of binocular correlations by monocular deprivation promoted a topographic loss of NMDAR1 expression within the cortical representations of the central visual field and the vertical and horizontal meridians. In contrast, binocular deprivation, which primarily affects visual deprivation, promoted an increase in NMDAR1 expression throughout the visual cortex. These different changes in NMDAR1 expression can be described as topographic and homeostatic plasticity of NMDA expression, respectively. In addition, the changes in NMDA expression in the visual cortex provide a greater understanding of the neural mechanisms that underlie the development of amblyopia and the potential for visual recovery.


Journal of Vision | 2015

Binocular visual training to promote recovery from monocular deprivation

Kathryn M. Murphy; Grayson Roumeliotis; Kate Williams; Brett R. Beston; David G. Jones

Abnormal early visual experience often leads to poor vision, a condition called amblyopia. Two recent approaches to treating amblyopia include binocular therapies and intensive visual training. These reflect the emerging view that amblyopia is a binocular deficit caused by increased neural noise and poor signal-in-noise integration. Most perceptual learning studies have used monocular training; however, a recent study has shown that binocular training is effective for improving acuity in adult human amblyopes. We used an animal model of amblyopia, based on monocular deprivation, to compare the effect of binocular training either during or after the critical period for ocular dominance plasticity (early binocular training vs. late binocular training). We used a high-contrast, orientation-in-noise stimulus to drive the visual cortex because neurophysiological findings suggest that binocular training may allow the nondeprived eye to teach the deprived eyes circuits to function. We found that both early and late binocular training promoted good visual recovery. Surprisingly, we found that monocular deprivation caused a permanent deficit in the vision of both eyes, which became evident only as a sleeper effect following many weeks of visual training.

Collaboration


Dive into the David G. Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge