Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David G. Kwabi is active.

Publication


Featured researches published by David G. Kwabi.


Energy and Environmental Science | 2013

Lithium–oxygen batteries: bridging mechanistic understanding and battery performance

Yi-Chun Lu; Betar M. Gallant; David G. Kwabi; Jonathon R. Harding; Robert R. Mitchell; M. Stanley Whittingham; Yang Shao-Horn

Rechargeable energy storage systems with high energy density and round-trip efficiency are urgently needed to capture and deliver renewable energy for applications such as electric transportation. Lithium–air/lithium–oxygen (Li–O2) batteries have received extraordinary research attention recently owing to their potential to provide positive electrode gravimetric energies considerably higher (∼3 to 5×) than Li-ion positive electrodes, although the packaged device energy density advantage will be lower (∼2×). In light of the major technological challenges of Li–O2 batteries, we discuss current understanding developed in non-carbonate electrolytes of Li–O2 redox chemistry upon discharge and charge, oxygen reduction reaction product characteristics upon discharge, and the chemical instability of electrolytes and carbon commonly used in the oxygen electrode. We show that the kinetics of oxygen reduction reaction are influenced by catalysts at small discharge capacities (Li2O2 thickness less than ∼1 nm), but not at large Li2O2 thicknesses, yielding insights into the governing processes during discharge. In addition, we discuss the characteristics of discharge products (mainly Li2O2) including morphological, electronic and surface features and parasitic reactivity with carbon. On charge, we examine the reaction mechanism of the oxygen evolution reaction from Li2O2 and the influence of catalysts on bulk Li2O2 decomposition. These analyses provide insights into major discrepancies regarding Li–O2 charge kinetics and the role of catalyst. In light of these findings, we highlight open questions and challenges in the Li–O2 field relevant to developing practical, reversible batteries that achieve the anticipated energy density advantage with a long cycle life.


Energy and Environmental Science | 2011

The discharge rate capability of rechargeable Li–O2 batteries

Yi-Chun Lu; David G. Kwabi; Koffi P. C. Yao; Jonathon R. Harding; Jigang Zhou; Lucia Zuin; Yang Shao-Horn

The O2electrode in Li–O2cells was shown to exhibit gravimetric energy densities (considering the total weight of oxygen electrode in the discharged state) four times that of LiCoO2 with comparable gravimetric power. The discharge rate capability of Au-catalyzed Vulcan carbon and pure Vulcan carbon (VC) as the O2electrode was studied in the range of 100 to 2000 mA gcarbon−1. The discharge voltage and capacity of the Li−O2 cells were shown to decrease with increasing rates. Unlike propylene carbonate based electrolytes, the rate capability of Li−O2 cells tested with 1,2-dimethoxyethane was found not to be limited by oxygen transport in the electrolyte. X-Ray diffraction (XRD) showed lithium peroxide as the discharge product and no evidence of Li2CO3 and LiOH was found. It is hypothesized that higher discharge voltages of cells with Au/C than VC at low rates could have originated from higher oxygen reduction activity of Au/C. At high rates, higher discharge voltages with Au/C than VC could be attributed to faster lithium transport in nonstoichiometric and defective lithium peroxide formed upon discharge, which is supported by XRD and X-ray absorption near edge structure O and Li K edge data.


Energy and Environmental Science | 2013

Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries

Betar M. Gallant; David G. Kwabi; Robert R. Mitchell; Jigang Zhou; Carl V. Thompson; Yang Shao-Horn

Understanding the origins of high overpotentials required for Li2O2 oxidation in Li–O2 batteries is critical for developing practical devices with improved round-trip efficiency. While a number of studies have reported different Li2O2 morphologies formed during discharge, the influence of the morphology and structure of Li2O2 on the oxygen evolution reaction (OER) kinetics and pathways is not known. Here, we show that two characteristic Li2O2 morphologies are formed in carbon nanotube (CNT) electrodes in a 1,2-dimethoxyethane (DME) electrolyte: discs/toroids (50–200 nm) at low rates/overpotentials (10 mA gC−1 or E > 2.7 V vs. Li), or small particles (<20 nm) at higher rates/overpotentials. Upon galvanostatic charging, small particles exhibit a sloping profile with low overpotential (<4 V) while discs exhibit a two-stage process involving an initially sloping region followed by a voltage plateau. Potentiostatic intermittent titration technique (PITT) measurements reveal that charging in the sloping region corresponds to solid solution-like delithiation, whereas the voltage plateau (E = 3.4 V vs. Li) corresponds to two-phase oxidation. The marked differences in charging profiles are attributed to differences in surface structure, as supported by X-ray absorption near edge structure (XANES) data showing that oxygen anions on disc surfaces have LiO2-like electronic features while those on the particle surfaces are more bulk Li2O2-like with modified electronic structure compared to commercial Li2O2. Such an integrated structural, chemical, and morphological approach to understanding the OER kinetics provides new insights into the desirable discharge product structure for charging at lower overpotentials.


Journal of Physical Chemistry Letters | 2014

Chemical Instability of Dimethyl Sulfoxide in Lithium–Air Batteries

David G. Kwabi; Thomas P. Batcho; Chibueze V. Amanchukwu; Nagore Ortiz-Vitoriano; Paula T. Hammond; Carl V. Thompson; Yang Shao-Horn

Although dimethyl sulfoxide (DMSO) has emerged as a promising solvent for Li-air batteries, enabling reversible oxygen reduction and evolution (2Li + O2 ⇔ Li2O2), DMSO is well known to react with superoxide-like species, which are intermediates in the Li-O2 reaction, and LiOH has been detected upon discharge in addition to Li2O2. Here we show that toroidal Li2O2 particles formed upon discharge gradually convert into flake-like LiOH particles upon prolonged exposure to a DMSO-based electrolyte, and the amount of LiOH detectable increases with increasing rest time in the electrolyte. Such time-dependent electrode changes upon and after discharge are not typically monitored and can explain vastly different amounts of Li2O2 and LiOH reported in oxygen cathodes discharged in DMSO-based electrolytes. The formation of LiOH is attributable to the chemical reactivity of DMSO with Li2O2 and superoxide-like species, which is supported by our findings that commercial Li2O2 powder can decompose DMSO to DMSO2, and that the presence of KO2 accelerates both DMSO decomposition and conversion of Li2O2 into LiOH.


Journal of Physical Chemistry Letters | 2015

Rate-Dependent Nucleation and Growth of NaO2 in Na–O2 Batteries

Nagore Ortiz-Vitoriano; Thomas P. Batcho; David G. Kwabi; Binghong Han; Nir Pour; Koffi P. C. Yao; Carl V. Thompson; Yang Shao-Horn

Understanding the oxygen reduction reaction kinetics in the presence of Na ions and the formation mechanism of discharge product(s) is key to enhancing Na-O2 battery performance. Here we show NaO2 as the only discharge product from Na-O2 cells with carbon nanotubes in 1,2-dimethoxyethane from X-ray diffraction and Raman spectroscopy. Sodium peroxide dihydrate was not detected in the discharged electrode with up to 6000 ppm of H2O added to the electrolyte, but it was detected with ambient air exposure. In addition, we show that the sizes and distributions of NaO2 can be highly dependent on the discharge rate, and we discuss the formation mechanisms responsible for this rate dependence. Micron-sized (∼500 nm) and nanometer-scale (∼50 nm) cubes were found on the top and bottom of a carbon nanotube (CNT) carpet electrode and along CNT sidewalls at 10 mA/g, while only micron-scale cubes (∼2 μm) were found on the top and bottom of the CNT carpet at 1000 mA/g, respectively.


Angewandte Chemie | 2016

Experimental and Computational Analysis of the Solvent‐Dependent O2/Li+‐O2− Redox Couple: Standard Potentials, Coupling Strength, and Implications for Lithium–Oxygen Batteries

David G. Kwabi; Vyacheslav S. Bryantsev; Thomas P. Batcho; Daniil M. Itkis; Carl V. Thompson; Yang Shao-Horn

Understanding and controlling the kinetics of O2 reduction in the presence of Li(+)-containing aprotic solvents, to either Li(+)-O2(-) by one-electron reduction or Li2 O2 by two-electron reduction, is instrumental to enhance the discharge voltage and capacity of aprotic Li-O2 batteries. Standard potentials of O2 /Li(+)-O2(-) and O2/O2(-) were experimentally measured and computed using a mixed cluster-continuum model of ion solvation. Increasing combined solvation of Li(+) and O2(-) was found to lower the coupling of Li(+)-O2(-) and the difference between O2/Li(+)-O2(-) and O2/O2(-) potentials. The solvation energy of Li(+) trended with donor number (DN), and varied greater than that of O2 (-) ions, which correlated with acceptor number (AN), explaining a previously reported correlation between Li(+)-O2(-) solubility and DN. These results highlight the importance of the interplay between ion-solvent and ion-ion interactions for manipulating the energetics of intermediate species produced in aprotic metal-oxygen batteries.


Journal of Physical Chemistry Letters | 2016

Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries.

David G. Kwabi; Michal Tulodziecki; Nir Pour; Daniil M. Itkis; Carl V. Thompson; Yang Shao-Horn

Fundamental understanding of growth mechanisms of Li2O2 in Li-O2 cells is critical for implementing batteries with high gravimetric energies. Li2O2 growth can occur first by 1e(-) transfer to O2, forming Li(+)-O2(-) and then either chemical disproportionation of Li(+)-O2(-), or a second electron transfer to Li(+)-O2(-). We demonstrate that Li2O2 growth is governed primarily by disproportionation of Li(+)-O2(-) at low overpotential, and surface-mediated electron transfer at high overpotential. We obtain evidence supporting this trend using the rotating ring disk electrode (RRDE) technique, which shows that the fraction of oxygen reduction reaction charge attributable to soluble Li(+)-O2(-)-based intermediates increases as the discharge overpotential reduces. Electrochemical quartz crystal microbalance (EQCM) measurements of oxygen reduction support this picture, and show that the dependence of the reaction mechanism on the applied potential explains the difference in Li2O2 morphologies observed at different discharge overpotentials: formation of large (∼250 nm-1 μm) toroids, and conformal coatings (<50 nm) at higher overpotentials. These results highlight that RRDE and EQCM can be used as complementary tools to gain new insights into the role of soluble and solid reaction intermediates in the growth of reaction products in metal-O2 batteries.


ACS Applied Materials & Interfaces | 2017

Insights into Electrochemical Oxidation of NaO2 in Na–O2 Batteries via Rotating Ring Disk and Spectroscopic Measurements

Robert Morasch; David G. Kwabi; Michal Tulodziecki; Marcel Risch; Shiyu Zhang; Yang Shao-Horn

O2 reduction in aprotic Na-O2 batteries results in the formation of NaO2, which can be oxidized at small overpotentials (<200 mV) on charge. In this study, we investigated the NaO2 oxidation mechanism using rotating ring disk electrode (RRDE) measurements of Na-O2 reaction products and by tracking the morphological evolution of the NaO2 discharge product at different states of charge using scanning electron microscopy (SEM). The results show that negligible soluble species are formed during NaO2 oxidation, and that the oxidation occurs predominantly via charge transfer at the interface between NaO2 and carbon electrode fibers rather than uniformly from all NaO2 surfaces. X-ray absorption near edge structure (XANES), and X-ray photoelectron spectroscopy (XPS) measurements show that the band gap of NaO2 is smaller than that of Li2O2 formed in Li-O2 batteries, in which charging overpotentials are much higher (∼1000 mV). These results emphasize the importance of discharge product electronic structure for rationalizing metal-air battery mechanisms and performance.


Energy and Environmental Science | 2017

The role of iodide in the formation of lithium hydroxide in lithium–oxygen batteries

Michal Tulodziecki; Graham M. Leverick; Chibueze V. Amanchukwu; Yu Katayama; David G. Kwabi; Fanny Bardé; Paula T. Hammond; Yang Shao-Horn

Lithium iodide has been studied extensively as a redox-mediator to reduce the charging overpotential of Li–oxygen (Li–O2) batteries. Ambiguities exist regarding the influence of lithium iodide on the reaction product chemistry and performance of lithium–oxygen batteries. In this work, we examined the role of lithium iodide on the reduction product chemistry under two conditions: (i) mixing KO2 with lithium salts and (ii) discharging Li–oxygen batteries at high and low overpotentials, in the presence of an ether-based electrolyte with different ratios of H2O : LiI. The addition of iodide to electrolytes containing water was found to promote the formation of LiOOH·H2O, LiOH·H2O and LiOH at the expense of Li2O2. At low H2O : LiI ratios (lower than 5), LiOH instead of Li2O2 was formed, which was accompanied by the oxidation of iodide to triodide while at high H2O : LiI ratios (12, 24, 134), a mixture of Li2O2, LiOOH·H2O and LiOH·H2O was observed and no triiodide was detected. The reaction between peroxide Li2O2 and/or superoxide LiO2 with H2O to form LiOH is facilitated by increased water acidity by strong I−–H2O interactions as revealed by 1H NMR and FT-IR measurements. This mechanism of LiOH formation in the presence of LiI and H2O was also found upon Li–O2 cell discharge, which is critical to consider when developing LiI as a redox mediator for Li–O2 batteries.


Archive | 2014

The Kinetics and Product Characteristics of Oxygen Reduction and Evolution in LiO2 Batteries

Betar M. Gallant; Yi-Chun Lu; Robert R. Mitchell; David G. Kwabi; Thomas J. Carney; Carl V. Thompson; Yang Shao-Horn

Understanding the origin of substantial performance challenges limiting the practical development of Li–O2 batteries, such as low rate capability, limited cycle life (<100 cycles), and the large voltage polarization (0.6–1 V) on charge, requires improved understanding of chemical, electrochemical, morphological, and electronic processes occurring in the electrode. This chapter highlights current understanding of how the kinetics and reaction product characteristics in Li–O2 batteries during discharge and charge influence performance characteristics at the cell level. First, a brief overview of energy and power of various Li–O2 electrodes reported in the literature to date is presented for a range of O2 electrode materials and designs as a benchmark for what has been achieved at the laboratory scale. Next, we review chemical and morphological understanding of the oxygen reduction (discharge) process, with a particular focus on nanostructured carbon electrodes in 1,2-dimethoxyethane (DME) electrolyte. The kinetics of oxygen reduction and the influence of kinetics on the morphology and shape evolution of Li2O2 are discussed, including recent insights into the microscale structure and proposed growth mechanisms of “toroidal” crystalline Li2O2 at low currents or overpotentials. We next discuss the surface chemistry of discharged oxygen electrodes, including the morphology-dependent surface chemistry of Li2O2, reactivity between Li2O2 and the carbon electrode, reactivity between Li2O2 and ether-based electrolytes, and resulting parasitic products that form upon discharge and during subsequent cycling. In light of chemical instabilities present nearly universally in liquid cells, we highlight recent work utilizing in situ ambient pressure XPS (APXPS) to examine Li–O2 electrochemistry during battery operation in an all-solid-state cell. Finally, we discuss the influence of morphology and surface chemistry of the discharge product on the charging kinetics in carbon-nanostructured electrodes, where morphology-dependent Li2O2 surface chemistry and structure are found to significantly influence the overpotential required during oxidation. Combined chemical, electrochemical, morphological, and electronic understanding is increasingly important as researchers seek to develop improved O2 electrodes with increased round-trip efficiency and improved chemical/electrochemical reversibility approaching what is needed for practical devices.

Collaboration


Dive into the David G. Kwabi's collaboration.

Top Co-Authors

Avatar

Yang Shao-Horn

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Carl V. Thompson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas P. Batcho

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Koffi P. C. Yao

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yi-Chun Lu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Chibueze V. Amanchukwu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michal Tulodziecki

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Azzam N. Mansour

Naval Surface Warfare Center

View shared research outputs
Top Co-Authors

Avatar

Betar M. Gallant

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nir Pour

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge