David Gaveau
Center for International Forestry Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Gaveau.
PLOS ONE | 2014
David Gaveau; Sean Sloan; Elis Molidena; Husna Yaen; Doug Sheil; Nicola K. Abram; Marc Ancrenaz; Robert Nasi; Marcela Quinones; Niels Wielaard; Erik Meijaard
The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneos area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km−2, and the lowest density in Brunei, at 0.18 km km−2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo.
Scientific Reports | 2015
David Gaveau; Mohammad A. Salim; Kristell Hergoualc'h; Bruno Locatelli; Sean Sloan; Martin J. Wooster; Miriam E. Marlier; Elis Molidena; Husna Yaen; Ruth S. DeFries; Louis Verchot; Daniel Murdiyarso; Robert Nasi; Peter Holmgren; Douglas Sheil
Trans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013 – a non-drought year – Singapores 24-hr Pollutants Standards Index reached an all-time record 246 (rated “very unhealthy”). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 ± 59 Tg CO2-eq (or 31 ± 12 Tg C), representing 5–10% of Indonesias mean annual GHG emissions for 2000–2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.
PLOS ONE | 2013
David Gaveau; Mrigesh Kshatriya; Douglas Sheil; Sean Sloan; Elis Molidena; Arief Wijaya; Serge A. Wich; Marc Ancrenaz; Matthew C. Hansen; Mark Broich; Manuel R. Guariguata; Pablo Pacheco; Peter V. Potapov; Svetlana Turubanova; Erik Meijaard
Combining protected areas with natural forest timber concessions may sustain larger forest landscapes than is possible via protected areas alone. However, the role of timber concessions in maintaining natural forest remains poorly characterized. An estimated 57% (303,525 km2) of Kalimantans land area (532,100 km2) was covered by natural forest in 2000. About 14,212 km2 (4.7%) had been cleared by 2010. Forests in oil palm concessions had been reduced by 5,600 km2 (14.1%), while the figures for timber concessions are 1,336 km2 (1.5%), and for protected forests are 1,122 km2 (1.2%). These deforestation rates explain little about the relative performance of the different land use categories under equivalent conversion risks due to the confounding effects of location. An estimated 25% of lands allocated for timber harvesting in 2000 had their status changed to industrial plantation concessions in 2010. Based on a sample of 3,391 forest plots (1×1 km; 100 ha), and matching statistical analyses, 2000–2010 deforestation was on average 17.6 ha lower (95% C.I.: −22.3 ha–−12.9 ha) in timber concession plots than in oil palm concession plots. When location effects were accounted for, deforestation rates in timber concessions and protected areas were not significantly different (Mean difference: 0.35 ha; 95% C.I.: −0.002 ha–0.7 ha). Natural forest timber concessions in Kalimantan had similar ability as protected areas to maintain forest cover during 2000–2010, provided the former were not reclassified to industrial plantation concessions. Our study indicates the desirability of the Government of Indonesia designating its natural forest timber concessions as protected areas under the IUCN Protected Area Category VI to protect them from reclassification.
Scientific Reports | 2016
V. Huijnen; Martin J. Wooster; Johannes W. Kaiser; David Gaveau; Johannes Flemming; Mark Parrington; A. Inness; D. Murdiyarso; Bruce Main; M. van Weele
In September and October 2015 widespread forest and peatland fires burned over large parts of maritime southeast Asia, most notably Indonesia, releasing large amounts of terrestrially-stored carbon into the atmosphere, primarily in the form of CO2, CO and CH4. With a mean emission rate of 11.3 Tg CO2 per day during Sept-Oct 2015, emissions from these fires exceeded the fossil fuel CO2 release rate of the European Union (EU28) (8.9 Tg CO2 per day). Although seasonal fires are a frequent occurrence in the human modified landscapes found in Indonesia, the extent of the 2015 fires was greatly inflated by an extended drought period associated with a strong El Niño. We estimate carbon emissions from the 2015 fires to be the largest seen in maritime southeast Asia since those associated with the record breaking El Niño of 1997. Compared to that event, a much better constrained regional total carbon emission estimate can be made for the 2015 fires through the use of present-day satellite observations of the fire’s radiative power output and atmospheric CO concentrations, processed using the modelling and assimilation framework of the Copernicus Atmosphere Monitoring Service (CAMS) and combined with unique in situ smoke measurements made on Kalimantan.
Scientific Reports | 2016
David Gaveau; Douglas Sheil; Husnayaen; Mohammad A. Salim; Sanjiwana Arjasakusuma; Marc Ancrenaz; Pablo Pacheco; Erik Meijaard
New plantations can either cause deforestation by replacing natural forests or avoid this by using previously cleared areas. The extent of these two situations is contested in tropical biodiversity hotspots where objective data are limited. Here, we explore delays between deforestation and the establishment of industrial tree plantations on Borneo using satellite imagery. Between 1973 and 2015 an estimated 18.7 Mha of Borneo’s old-growth forest were cleared (14.4 Mha and 4.2 Mha in Indonesian and Malaysian Borneo). Industrial plantations expanded by 9.1 Mha (7.8 Mha oil-palm; 1.3 Mha pulpwood). Approximately 7.0 Mha of the total plantation area in 2015 (9.2 Mha) were old-growth forest in 1973, of which 4.5–4.8 Mha (24–26% of Borneo-wide deforestation) were planted within five years of forest clearance (3.7–3.9 Mha oil-palm; 0.8–0.9 Mha pulpwood). This rapid within-five-year conversion has been greater in Malaysia than in Indonesia (57–60% versus 15–16%). In Indonesia, a higher proportion of oil-palm plantations was developed on already cleared degraded lands (a legacy of recurrent forest fires). However, rapid conversion of Indonesian forests to industrial plantations has increased steeply since 2005. We conclude that plantation industries have been the principle driver of deforestation in Malaysian Borneo over the last four decades. In contrast, their role in deforestation in Indonesian Borneo was less marked, but has been growing recently. We note caveats in interpreting these results and highlight the need for greater accountability in plantation development.
PLOS ONE | 2012
Serge A. Wich; David Gaveau; Nicola K. Abram; Marc Ancrenaz; Alessandro Baccini; Stephen Brend; Lisa M. Curran; Roberto A. Delgado; Andi Erman; Gabriella Fredriksson; Benoit Goossens; Simon J. Husson; Isabelle Lackman; Andrew J. Marshall; Anita Naomi; Elis Molidena; Nardiyono; Anton Nurcahyo; Kisar Odom; Adventus Panda; Purnomo; Andjar Rafiastanto; Dessy Ratnasari; Adi H. Santana; Imam Sapari; Carel P. van Schaik; Jamartin Sihite; Stephanie N. Spehar; Eddy Santoso; Amat Suyoko
The geographic distribution of Bornean orang-utans and its overlap with existing land-use categories (protected areas, logging and plantation concessions) is a necessary foundation to prioritize conservation planning. Based on an extensive orang-utan survey dataset and a number of environmental variables, we modelled an orang-utan distribution map. The modelled orang-utan distribution map covers 155,106 km2 (21% of Borneos landmass) and reveals four distinct distribution areas. The most important environmental predictors are annual rainfall and land cover. The overlap of the orang-utan distribution with land-use categories reveals that only 22% of the distribution lies in protected areas, but that 29% lies in natural forest concessions. A further 19% and 6% occurs in largely undeveloped oil palm and tree plantation concessions, respectively. The remaining 24% of the orang-utan distribution range occurs outside of protected areas and outside of concessions. An estimated 49% of the orang-utan distribution will be lost if all forest outside of protected areas and logging concessions is lost. To avoid this potential decline plantation development in orang-utan habitats must be halted because it infringes on national laws of species protection. Further growth of the plantation sector should be achieved through increasing yields in existing plantations and expansion of new plantations into areas that have already been deforested. To reach this goal a large scale island-wide land-use masterplan is needed that clarifies which possible land uses and managements are allowed in the landscape and provides new standardized strategic conservation policies. Such a process should make much better use of non-market values of ecosystem services of forests such as water provision, flood control, carbon sequestration, and sources of livelihood for rural communities. Presently land use planning is more driven by vested interests and direct and immediate economic gains, rather than by approaches that take into consideration social equity and environmental sustainability.
PLOS ONE | 2013
Erik Meijaard; Nicola K. Abram; Jessie A. Wells; Anne-Sophie Pellier; Marc Ancrenaz; David Gaveau; Rebecca K. Runting; Kerrie Mengersen
We ascertained villagers’ perceptions about the importance of forests for their livelihoods and health through 1,837 reliably answered interviews of mostly male respondents from 185 villages in Indonesian and Malaysian Borneo. Variation in these perceptions related to several environmental and social variables, as shown in classification and regression analyses. Overall patterns indicated that forest use and cultural values are highest among people on Borneo who live close to remaining forest, and especially among older Christian residents. Support for forest clearing depended strongly on the scale at which deforestation occurs. Deforestation for small-scale agriculture was generally considered to be positive because it directly benefits people’s welfare. Large-scale deforestation (e.g., for industrial oil palm or acacia plantations), on the other hand, appeared to be more context-dependent, with most respondents considering it to have overall negative impacts on them, but with people in some areas considering the benefits to outweigh the costs. The interviews indicated high awareness of negative environmental impacts of deforestation, with high levels of concern over higher temperatures, air pollution and loss of clean water sources. Our study is unique in its geographic and trans-national scale. Our findings enable the development of maps of forest use and perceptions that could inform land use planning at a range of scales. Incorporating perspectives such as these could significantly reduce conflict over forest resources and ultimately result in more equitable development processes.
PLOS ONE | 2014
Gopalasamy Reuben Clements; Antony J. Lynam; David Gaveau; Wei Lim Yap; Stanislav Lhota; Miriam Goosem; Susan G. Laurance; William F. Laurance
Habitat destruction and overhunting are two major drivers of mammal population declines and extinctions in tropical forests. The construction of roads can be a catalyst for these two threats. In Southeast Asia, the impacts of roads on mammals have not been well-documented at a regional scale. Before evidence-based conservation strategies can be developed to minimize the threat of roads to endangered mammals within this region, we first need to locate where and how roads are contributing to the conversion of their habitats and illegal hunting in each country. We interviewed 36 experts involved in mammal research from seven Southeast Asian countries to identify roads that are contributing the most, in their opinion, to habitat conversion and illegal hunting. Our experts highlighted 16 existing and eight planned roads - these potentially threaten 21% of the 117 endangered terrestrial mammals in those countries. Apart from gathering qualitative evidence from the literature to assess their claims, we demonstrate how species-distribution models, satellite imagery and animal-sign surveys can be used to provide quantitative evidence of roads causing impacts by (1) cutting through habitats where endangered mammals are likely to occur, (2) intensifying forest conversion, and (3) contributing to illegal hunting and wildlife trade. To our knowledge, ours is the first study to identify specific roads threatening endangered mammals in Southeast Asia. Further through highlighting the impacts of roads, we propose 10 measures to limit road impacts in the region.
Current Biology | 2015
Andreas Wilting; David Gaveau; Erik Meijaard; Robert J. Smith; Manuela Fischer; Kristian Metcalfe; Stephanie Kramer-Schadt
Responses of biodiversity to changes in both land cover and climate are recognized [1] but still poorly understood [2]. This poses significant challenges for spatial planning as species could shift, contract, expand, or maintain their range inside or outside protected areas [2-4]. We examine this problem in Borneo, a global biodiversity hotspot [5], using spatial prioritization analyses that maximize species conservation under multiple environmental-change forecasts. Climate projections indicate that 11%-36% of Bornean mammal species will lose ≥ 30% of their habitat by 2080, and suitable ecological conditions will shift upslope for 23%-46%. Deforestation exacerbates this process, increasing the proportion of species facing comparable habitat loss to 30%-49%, a 2-fold increase on historical trends. Accommodating these distributional changes will require conserving land outside existing protected areas, but this may be less than anticipated from models incorporating deforestation alone because some species will colonize high-elevation reserves. Our results demonstrate the increasing importance of upland reserves and that relatively small additions (16,000-28,000 km(2)) to the current conservation estate could provide substantial benefits to biodiversity facing changes to land cover and climate. On Borneo, much of this land is under forestry jurisdiction, warranting targeted conservation partnerships to safeguard biodiversity in an era of global change.
Global Change Biology | 2015
Manuela Fischer; David Gaveau; Erik Meijaard; Serge A. Wich; Catherine Gonner; Rachel Sykes; Andreas Wilting; Stephanie Kramer-Schadt
Habitat loss and climate change pose a double jeopardy for many threatened taxa, making the identification of optimal habitat for the future a conservation priority. Using a case study of the endangered Bornean orang-utan, we identify environmental refuges by integrating bioclimatic models with projected deforestation and oil-palm agriculture suitability from the 1950s to 2080s. We coupled a maximum entropy algorithm with information on habitat needs to predict suitable habitat for the present day and 1950s. We then projected to the 2020s, 2050s and 2080s in models incorporating only land-cover change, climate change or both processes combined. For future climate, we incorporated projections from four model and emission scenario combinations. For future land cover, we developed spatial deforestation predictions from 10 years of satellite data. Refuges were delineated as suitable forested habitats identified by all models that were also unsuitable for oil palm - a major threat to tropical biodiversity. Our analyses indicate that in 2010 up to 260,000 km(2) of Borneo was suitable habitat within the core orang-utan range; an 18-24% reduction since the 1950s. Land-cover models predicted further decline of 15-30% by the 2080s. Although habitat extent under future climate conditions varied among projections, there was majority consensus, particularly in north-eastern and western regions. Across projections habitat loss due to climate change alone averaged 63% by 2080, but 74% when also considering land-cover change. Refuge areas amounted to 2000-42,000 km(2) depending on thresholds used, with 900-17,000 km(2) outside the current species range. We demonstrate that efforts to halt deforestation could mediate some orang-utan habitat loss, but further decline of the most suitable areas is to be expected given projected changes to climate. Protected refuge areas could therefore become increasingly important for ongoing translocation efforts. We present an approach to help identify such areas for highly threatened species given environmental changes expected this century.