Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Gesbert is active.

Publication


Featured researches published by David Gesbert.


IEEE Journal on Selected Areas in Communications | 2003

From theory to practice: an overview of MIMO space-time coded wireless systems

David Gesbert; Mansoor Shafi; Da-shan Shiu; Peter J. Smith; Ayman F. Naguib

This paper presents an overview of progress in the area of multiple input multiple output (MIMO) space-time coded wireless systems. After some background on the research leading to the discovery of the enormous potential of MIMO wireless links, we highlight the different classes of techniques and algorithms proposed which attempt to realize the various benefits of MIMO including spatial multiplexing and space-time coding schemes. These algorithms are often derived and analyzed under ideal independent fading conditions. We present the state of the art in channel modeling and measurements, leading to a better understanding of actual MIMO gains. Finally, the paper addresses current questions regarding the integration of MIMO links in practical wireless systems and standards.


IEEE Journal on Selected Areas in Communications | 2010

Multi-Cell MIMO Cooperative Networks: A New Look at Interference

David Gesbert; Stephen V. Hanly; Howard C. Huang; Shlomo Shamai Shitz; Osvaldo Simeone; Wei Yu

This paper presents an overview of the theory and currently known techniques for multi-cell MIMO (multiple input multiple output) cooperation in wireless networks. In dense networks where interference emerges as the key capacity-limiting factor, multi-cell cooperation can dramatically improve the system performance. Remarkably, such techniques literally exploit inter-cell interference by allowing the user data to be jointly processed by several interfering base stations, thus mimicking the benefits of a large virtual MIMO array. Multi-cell MIMO cooperation concepts are examined from different perspectives, including an examination of the fundamental information-theoretic limits, a review of the coding and signal processing algorithmic developments, and, going beyond that, consideration of very practical issues related to scalability and system-level integration. A few promising and quite fundamental research avenues are also suggested.


IEEE Journal on Selected Areas in Communications | 2008

An overview of limited feedback in wireless communication systems

David J. Love; Robert W. Heath; Vincent Kin Nang Lau; David Gesbert; Bhaskar D. Rao; Matthew Andrews

It is now well known that employing channel adaptive signaling in wireless communication systems can yield large improvements in almost any performance metric. Unfortunately, many kinds of channel adaptive techniques have been deemed impractical in the past because of the problem of obtaining channel knowledge at the transmitter. The transmitter in many systems (such as those using frequency division duplexing) can not leverage techniques such as training to obtain channel state information. Over the last few years, research has repeatedly shown that allowing the receiver to send a small number of information bits about the channel conditions to the transmitter can allow near optimal channel adaptation. These practical systems, which are commonly referred to as limited or finite-rate feedback systems, supply benefits nearly identical to unrealizable perfect transmitter channel knowledge systems when they are judiciously designed. In this tutorial, we provide a broad look at the field of limited feedback wireless communications. We review work in systems using various combinations of single antenna, multiple antenna, narrowband, broadband, single-user, and multiuser technology. We also provide a synopsis of the role of limited feedback in the standardization of next generation wireless systems.


IEEE Transactions on Communications | 2002

On the capacity of OFDM-based spatial multiplexing systems

Helmut Bölcskei; David Gesbert; Arogyaswami Paulraj

This paper deals with the capacity behavior of wireless orthogonal frequency-division multiplexing (OFDM)-based spatial multiplexing systems in broad-band fading environments for the case where the channel is unknown at the transmitter and perfectly known at the receiver. Introducing a physically motivated multiple-input multiple-output (MIMO) broad-band fading channel model, we study the influence of physical parameters such as the amount of delay spread, cluster angle spread, and total angle spread, and system parameters such as the number of antennas and antenna spacing on ergodic capacity and outage capacity. We find that, in the MIMO case, unlike the single-input single-output (SISO) case, delay spread channels may provide advantages over flat fading channels not only in terms of outage capacity but also in terms of ergodic capacity. Therefore, MIMO delay spread channels will in general provide both higher diversity gain and higher multiplexing gain than MIMO flat fading channels


IEEE Signal Processing Magazine | 2007

Shifting the MIMO Paradigm

David Gesbert; Marios Kountouris; Robert W. Heath; Chan-Byoung Chae; Thomas Salzer

Multi-user MIMO (MU-MIMO) networks reveal the unique opportunities arising from a joint optimization of antenna combining techniques with resource allocation protocols. Furthermore, it brings robustness with respect to multipath richness, allowing for compact antenna spacing at the BS and, crucially, yielding the diversity and multiplexing gains without the need for multiple antenna user terminals. To realize these gains, however, the BS should be informed with the users channel coefficients, which may limit practical application to TDD or low-mobility settings. To circumvent this problem and reduce feedback load, combining MU-MIMO with opportunistic scheduling seems a promising direction. The success for this type of scheduler is strongly traffic and QoS-dependent, however.


international conference on communications | 2004

How much feedback is multi-user diversity really worth?

David Gesbert; Mohamed-Slim Alouini

Wireless scheduling algorithms can extract multi-user diversity (MUDiv) via prioritizing the users with best current channel conditions. One drawback of MUDiv is the required feedback carrying the instantaneous channel rates from from all active subscribers to the access point/base station. This paper shows that this feedback load is, for the most part, unjustified. To alleviate this problem, we propose a technique allowing to dramatically reduce the feedback (by up to 90%) needs while preserving the essential of the scheme performance. We provide a theoretical analysis of the feedback load as function of the systems ergodic and outage capacity for both the traditional MUDiv scheme and the new scheme.


IEEE Transactions on Signal Processing | 2007

Complex-Valued Matrix Differentiation: Techniques and Key Results

Are Hjørungnes; David Gesbert

A systematic theory is introduced for finding the derivatives of complex-valued matrix functions with respect to a complex-valued matrix variable and the complex conjugate of this variable. In the framework introduced, the differential of the complex-valued matrix function is used to identify the derivatives of this function. Matrix differentiation results are derived and summarized in tables which can be exploited in a wide range of signal processing related situations


Proceedings of the IEEE | 2007

Adaptation, Coordination, and Distributed Resource Allocation in Interference-Limited Wireless Networks

David Gesbert; Saad G. Kiani; A. Gjendemsj; G.E. ien

A sensible design of wireless networks involves striking a good balance between an aggressive reuse of the spectral resource throughout the network and managing the resulting co-channel interference. Traditionally, this problem has been tackled using a ldquodivide and conquerrdquo approach. The latter consists in deploying the network with a static or semidynamic pattern of resource reutilization. The chosen reuse factor, while sacrificing a substantial amount of efficiency, brings the interference to a tolerable level. The resource can then be managed in each cell so as to optimize the per cell capacity using an advanced air interface design. In this paper, we focus our attention on the overall network capacity as a measure of system performance. We consider the problem of resource allocation and adaptive transmission in multicell scenarios. As a key instance, the problem of joint scheduling and power control simultaneously in multiple transmit-receive links, which employ capacity-achieving adaptive codes, is studied. In principle, the solution of such an optimization hinges on tough issues such as the computational complexity and the requirement for heavy receiver-to-transmitter feedback and, for cellular networks, cell-to-cell channel state information (CSI) signaling. We give asymptotic properties pertaining to rate-maximizing power control and scheduling in multicell networks. We then present some promising leads for substantial complexity and signaling reduction via the use of newly developed distributed and game theoretic techniques.


IEEE Transactions on Signal Processing | 2002

Performance of multiantenna signaling techniques in the presence of polarization diversity

Rohit U. Nabar; Helmut Bölcskei; Vinko Erceg; David Gesbert; Arogyaswami Paulraj

Multiple-input multiple-output (MIMO) antenna systems employ spatial multiplexing to increase spectral efficiency or transmit diversity to improve link reliability. The performance of these signaling strategies is highly dependent on MIMO channel characteristics, which, in turn, depend on antenna height and spacing and richness of scattering. In practice, large antenna spacings are often required to achieve significant multiplexing or diversity gain. The use of dual-polarized antennas (polarization diversity) is a promising cost- and space-effective alternative, where two spatially separated uni-polarized antennas are replaced by a single antenna structure employing orthogonal polarizations. This paper investigates the performance of spatial multiplexing and transmit diversity (Alamouti (see IEEE J. Select. Areas Commun., vol.16, p.1451-58, Oct. 1998) scheme) in MIMO wireless systems employing dual-polarized antennas. In particular, we derive estimates for the uncoded average symbol error rate of spatial multiplexing and transmit diversity and identify channel conditions where the use of polarization diversity yields performance improvements. We show that while improvements in terms of symbol error rate of up to an order of magnitude are possible in the case of spatial multiplexing, the presence of polarization diversity generally incurs a performance loss for transmit diversity techniques. Finally, we provide simulation results to demonstrate that our estimates closely match the actual symbol error rates.


IEEE Transactions on Signal Processing | 2010

Cooperative Multicell Precoding: Rate Region Characterization and Distributed Strategies With Instantaneous and Statistical CSI

E Björnson; Randa Zakhour; David Gesbert; Björn E. Ottersten

Base station cooperation is an attractive way of increasing the spectral efficiency in multiantenna communication. By serving each terminal through several base stations in a given area, intercell interference can be coordinated and higher performance achieved, especially for terminals at cell edges. Most previous work in the area has assumed that base stations have common knowledge of both data dedicated to all terminals and full or partial channel state information (CSI) of all links. Herein, we analyze the case of distributed cooperation where each base station has only local CSI, either instantaneous or statistical. In the case of instantaneous CSI, the beamforming vectors that can attain the outer boundary of the achievable rate region are characterized for an arbitrary number of multiantenna transmitters and single-antenna receivers. This characterization only requires local CSI and justifies distributed precoding design based on a novel virtual signal-to-interference noise ratio (SINR) framework, which can handle an arbitrary SNR and achieves the optimal multiplexing gain. The local power allocation between terminals is solved heuristically. Conceptually, analogous results for the achievable rate region characterization and precoding design are derived in the case of local statistical CSI. The benefits of distributed cooperative transmission are illustrated numerically, and it is shown that most of the performance with centralized cooperation can be obtained using only local CSI.

Collaboration


Dive into the David Gesbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geir E. Øien

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge