David Guillaume MacLachlan
Heriot-Watt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Guillaume MacLachlan.
Monthly Notices of the Royal Astronomical Society | 2015
Robert J. Harris; David Guillaume MacLachlan; Debaditya Choudhury; Tim Morris; Eric Gendron; Alastair Basden; Graeme Brown; Jeremy R. Allington-Smith; Robert R. Thomson
The spectral resolution of a dispersive spectrograph is dependent on the width of the entrance slit. This means that astronomical spectrographs trade-off throughput with spectral resolving power. Recently, optical guided-wave transitions known as photonic lanterns have been proposed to circumvent this trade-off, by enabling the efficient reformatting of multimode light into a pseudo-slit which is highly multimode in one axis, but diffraction-limited in the other. Here, we demonstrate the successful reformatting of a telescope point spread function into such a slit using a three-dimensional integrated optical waveguide device, which we name the photonic dicer. Using the CANARY adaptive optics (AO) demonstrator on the William Herschel Telescope, and light centred at 1530 nm with a 160 nm full width at half-maximum, the device shows a transmission of between 10 and 20 per cent depending upon the type of AO correction applied. Most of the loss is due to the overfilling of the input aperture in poor and moderate seeing. Taking this into account, the photonic device itself has a transmission of 57 ± 4 per cent. We show how a fully-optimized device can be used with AO to provide efficient spectroscopy at high spectral resolution.
Optical Materials Express | 2013
David Guillaume MacLachlan; Robert R. Thomson; Colin R. Cunningham; David Lee
We report on the ultrafast laser inscription (ULI) of volume phase gratings inside gallium lanthanum sulphide (GLS) chalcogenide glass substrates. The effect of laser pulse energy and grating thickness on the dispersive properties of the gratings is investigated, with the aim of improving the performance of the gratings in the mid-infrared. The grating with the optimum performance in the mid-infrared exhibited a 1st order absolute diffraction efficiency of 61% at 1300 nm and 24% at 2640 nm. Based on the work reported here, we conclude that ULI is promising for the fabrication of mid-infrared volume phase gratings, with potential applications including astronomical instrumentation and remote sensing.
Monthly Notices of the Royal Astronomical Society | 2017
David Guillaume MacLachlan; Robert J. Harris; Itandehui Gris-Sánchez; Tim Morris; Debaditya Choudhury; Eric Gendron; Alastair Basden; Izabela Spaleniak; Alexander Arriola; T. A. Birks; Jeremy R. Allington-Smith; Robert R. Thomson
The spectral resolution of a dispersive astronomical spectrograph is limited by the trade-off between throughput and the width of the entrance slit. Photonic guided wave transitions have been proposed as a route to bypass this trade-off, by enabling the efficient reformatting of incoherent seeing-limited light collected by the telescope into a linear array of single modes: a pseudo-slit which is highly multimode in one axis but diffraction-limited in the dispersion axis of the spectrograph. It is anticipated that the size of a single-object spectrograph fed with light in this manner would be essentially independent of the telescope aperture size. A further anticipated benefit is that such spectrographs would be free of ‘modal noise’, a phenomenon that occurs in high-resolution multimode fibre-fed spectrographs due to the coherent nature of the telescope point spread function (PSF). We seek to address these aspects by integrating a multicore fibre photonic lantern with an ultrafast laser inscribed three-dimensional waveguide interconnect to spatially reformat the modes within the PSF into a diffraction-limited pseudo-slit. Using the CANARY adaptive optics (AO) demonstrator on the William Herschel Telescope, and 1530 ± 80 nm stellar light, the device exhibits a transmission of 47–53 per cent depending upon the mode of AO correction applied. We also show the advantage of using AO to couple light into such a device by sampling only the core of the CANARY PSF. This result underscores the possibility that a fully optimized guided-wave device can be used with AO to provide efficient spectroscopy at high spectral resolution.
Optics Letters | 2016
David Guillaume MacLachlan; Robert J. Harris; Debaditya Choudhury; Richard Simmonds; Patrick S. Salter; Martin J. Booth; Jeremy R. Allington-Smith; Robert R. Thomson
We present the results of our work on developing fully integrated devices (photonic dicers) for reformatting multimode light to a diffraction limited pseudo-slit. These devices can be used to couple a seeing limited telescope point spread function to a spectrograph operating at the diffraction limit, thus potentially enabling compact, high-resolution spectrographs that are free of modal noise.
Proceedings of SPIE | 2016
Izabela Spaleniak; David Guillaume MacLachlan; Itandehui Gris-Sánchez; Debaditya Choudhury; Robert J. Harris; Alexander Arriola; Jeremy R. Allington-Smith; T. A. Birks; Robert R. Thomson
This paper reports on the modal noise characterisation of a hybrid reformatter. The device consists of a multicore-fibre photonic lantern and an ultrafast laser-inscribed slit reformatter. It operates around 1550 nm and supports 92 modes. Photonic lanterns transform a multimode signal into an array of single-mode signals, and thus combine the high coupling efficiency of multimode fibres with the diffraction-limited performance of single-mode fibres. This paper presents experimental measurements of the device point spread function properties under different coupling conditions, and its throughput behaviour at high spectral resolution. The device demonstrates excellent scrambling but its point spread function is not completely stable. Mode field diameter and mode bary-centre position at the device output vary as the multicore fibre is agitated due to the fabrication imperfections.
Proceedings of SPIE | 2014
David Guillaume MacLachlan; Robert J. Harris; Debaditya Choudhury; Alexander Arriola; Graeme Brown; Jeremy R. Allington-Smith; Robert R. Thomson
Spectroscopy is a technique of paramount importance to astronomy, as it enables the chemical composition, distances and velocities of celestial objects to be determined. As the diameter of a ground-based telescope increases, the pointspread- function (PSF) becomes increasingly degraded due to atmospheric seeing. A degraded PSF requires a larger spectrograph slit-width for efficient coupling and current spectrographs for large telescopes are already on the metre scale. This presents numerous issues in terms of manufacturability, cost and stability. As proposed in 2010 by Bland-Hawthorn et al, one approach which may help to improve spectrograph stability is a guided wave transition, known as a “photonic-lantern”. These devices enable the low-loss reformatting of a multimode PSF into a diffraction-limited source (in one direction). This pseudo-slit can then be used as the input to a traditional spectrograph operating at the diffraction limit. In essence, this approach may enable the use of diffractionlimited spectrographs on large telescopes without an unacceptable reduction in throughput. We have recently demonstrated that ultrafast laser inscription can be used to realize “integrated” photoniclanterns, by directly writing three-dimensional optical waveguide structures inside a glass substrate. This paper presents our work on developing ultrafast laser inscribed devices capable of reformatting a multimode telescope PSF into a diffraction-limited slit.
Proceedings of SPIE | 2014
Robert J. Harris; Jeremy R. Allington-Smith; David Guillaume MacLachlan; Robert R. Thomson
It is possible to significantly improve the performance of astronomical spectroscopy by taking the Point Spread Function from a near diffraction-limited telescope and reformatting it using photonic technologies. This can improve the stability of a conventional instrument or provide an interface to single mode instruments developed for the telecommunications industry. We compare different options for reformatting and interfacing with different types of instruments and examine them using set metrics. We then examine the relative merits for instruments that could be developed for astronomy.
Monthly Notices of the Royal Astronomical Society | 2018
Th. Anagnos; Robert J. Harris; Mark K. Corrigan; A. P. Reeves; Matthew J. Townson; David Guillaume MacLachlan; Robert R. Thomson; Tim Morris; Christian Schwab; A. Quirrenbach
Image slicing is a powerful technique in astronomy. It allows the instrument designer to reduce the slit width of the spectrograph, increasing spectral resolving power whilst retaining throughput. Conventionally this is done using bulk optics, such as mirrors and prisms, however, more recently astrophotonic components known as photonic lanterns and photonic reformatters have also been used. These devices reformat the multimode input light from a telescope into single-mode outputs, which can then be re-arranged to suit the spectrograph. The photonic dicer (PD) is one such device, designed to reduce the dependence of spectrograph size on telescope aperture and eliminate modal noise. We simulate the PD, by optimizing the throughput and geometrical design using SOAPY and BEAMPROP. The simulated device shows a transmission between 8 and 20 per cent, depending upon the type of adaptive optics correction applied, matching the experimental results well. We also investigate our idealized model of the PD and show that the barycentre of the slit varies only slightly with time, meaning that the modal noise contribution is very low when compared to conventional fibre systems. We further optimize our model device for both higher throughput and reduced modal noise. This device improves throughput by 6.4 per cent and reduces the movement of the slit output by 50 per cent, further improving stability. This shows the importance of properly simulating such devices, including atmospheric effects. Our work complements recent work in the field and is essential for optimizing future photonic reformatters.
Proceedings of SPIE | 2016
David W. Lee; David Guillaume MacLachlan; Helen L. Butcher; Richard Brownsword; Damien Weidmann; Colin R. Cunningham; Hermine Schnetler; Robert R. Thomson
Ultrafast laser inscription is a versatile manufacturing technique which can be used to modify the refractive index of various glasses on a microscopic scale. This enables the production of a number of photonic devices such as waveguides, beam-splitters, photonic lanterns, and diffraction gratings. In this paper, we report on the use of ultrafast laser inscription to fabricate volume phase transmission gratings in mid-infrared transmitting chalcogenide glass. We describe the optimisation of the laser inscription process parameters enhancing grating performances via the combination of spectrally resolved grating transmission measurements and theoretical analysis models. The first order diffraction efficiency of the gratings was measured at mid-infrared wavelengths (3-5 μm), and found to exceed 60% at the Littrow blaze wavelength, compared to a substrate external transmittance of 67%. This impressive result implies the diffraction efficiency should exceed 90% for a grating substrate treated with an anti-reflection coating. There is excellent agreement between the modelled grating efficiency and the measured data, and from a least squares fit to the measured data the refractive index modulation achieved during the inscription process is inferred. These encouraging initial results demonstrate that ultrafast laser inscription of chalcogenide glass may provide a potential new and alternative technology for the manufacture of astronomical diffraction gratings for use at near-infrared and mid-infrared wavelengths.
Workshop on Specialty Optical Fibers and their Applications (2013), paper F3.3 | 2013
Piotr Jaworski; Fei Yu; David Guillaume MacLachlan; Robert R. J. Maier; Robert R. Thomson; William J. Wadsworth; Jonathan C. Knight; Jonathan D. Shephard; Duncan P. Hand
We have delivered picosecond and femtosecond pulses with peak powers of 15.3 MW and 0.95 MW respectively through a hollow-core Negative Curvature Fibre and thereby demonstrated the suitability of fibre-delivered beam in precision micro-machining applications.