David H. Bos
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David H. Bos.
Molecular Phylogenetics and Evolution | 2010
Jillian T. Detwiler; David H. Bos; Dennis J. Minchella
The recognition of cryptic parasite species has implications for evolutionary and population-based studies of wildlife and human disease. Echinostome trematodes are a widely distributed, species-rich group of internal parasites that infect a wide array of hosts and are agents of disease in amphibians, mammals, and birds. We utilize genetic markers to understand patterns of morphology, host use, and geographic distribution among several species groups. Parasites from >150 infected host snails (Lymnaea elodes, Helisoma trivolvis and Biomphalaria glabrata) were sequenced at two mitochondrial genes (ND1 and CO1) and one nuclear gene (ITS) to determine whether cryptic species were present at five sites in North and South America. Phylogenetic and network analysis demonstrated the presence of five cryptic Echinostoma lineages, one Hypoderaeum lineage, and three Echinoparyphium lineages. Cryptic life history patterns were observed in two species groups, Echinostoma revolutum and Echinostoma robustum, which utilized both lymnaied and planorbid snail species as first intermediate hosts. Molecular evidence confirms that two species, E. revolutum and E. robustum, have cosmopolitan distributions while other species, E. trivolvis and Echinoparyphium spp., may be more geographically limited. The intra and interspecific variation detected in our study provides a genetic basis for seven species groups of echinostomes which will help accurately identify agents of disease as well as reveal cryptic aspects of trematode biology.
Evolution | 2008
David H. Bos; David Gopurenko; Rod N. Williams; Andrew J. DeWoody
Abstract Microsatellites and mitochondrial DNA (mtDNA) have traditionally been used in population genetics because of their variability and presumed neutrality, whereas genes of the major histocompatibility complex (MHC) are increasingly of interest because strong selective pressures shape their standing variation. Despite the potential for MHC genes, microsatellites, and mtDNA sequences to complement one another in deciphering population history and demography, the three are rarely used in tandem. Here we report on MHC, microsatellite, and mtDNA variability in a single large population of the eastern tiger salamander (Ambystoma tigrinum tigrinum). We use the mtDNA mismatch distribution and, on microsatellite data, the imbalance index and bottleneck tests to infer aspects of population history and demography. Haplotype and allelic variation was high at all loci surveyed, and heterozygosity was high at the nuclear loci. We find concordance among neutral molecular markers that suggests our study population originated from post-Pleistocene expansions of multiple, fragmented sources that shared few migrants. Differences in Ne estimates derived from haploid and diploid genetic markers are potentially attributable to secondary contact among source populations that experienced rapid mtDNA divergence and comparatively low levels of nuclear DNA divergence. We find strong evidence of natural selection acting on MHC genes and estimate long-term effective population sizes (Ne) that are very large, making small selection intensities significant evolutionary forces in this population.
Molecular Ecology | 2009
David H. Bos; Rod N. Williams; David Gopurenko; Zafer Bulut; J. Andrew DeWoody
Major histocompatibility complex (MHC) alleles likely have adaptive value because of overdominance, in which case MHC heterozygous individuals have increased fitness relative to homozygotes. Because of this potential benefit, the evolution of sexual reproduction between MHC‐divergent individuals (i.e. negative assortative mating, NAM) may be favoured. However, the strongest evidence for MHC‐based NAM comes from inbred animals, and context‐dependent mating preferences have rarely been evaluated although they often occur in nature. We assessed the extent MHC‐based mating preferences among wild tiger salamanders (Ambystoma tigrinum) using multiple molecular approaches. We genotyped 102 adults and 864 larvae from 36 breeding trials at both microsatellite and MHC loci. Parentage analysis revealed that reproductive success among males was positively associated with increased tail length and that with respect to the focal female, MHC‐similar males sired a significantly higher number of offspring than more dissimilar males. This trend was consistent, even under context‐dependent scenarios that favour traditional MHC‐based NAM. These results suggest that the most MHC‐divergent males may be at a reproductive disadvantage in pairwise breeding trials. Our data add to a growing body of evidence that suggests where it exists, MHC‐based choice is probably dynamic and mediated by many factors that vary in the wild, notably signals from other indicator traits and by the quality and quantity of potential mates.
Immunogenetics | 2005
David H. Bos; J. Andrew DeWoody
Major histocompatibility complex (MHC) class II genes are usually among the most polymorphic in vertebrate genomes because of their critical role (antigen presentation) in immune response. Prior to this study, the MHC was poorly characterized in tiger salamanders (Ambystoma tigrinum), but the congeneric axolotl (Ambystoma mexicanum) is thought to have an unusual MHC. Most notably, axolotl class II genes lack allelic variation and possess a splice variant without a full peptide binding region (PBR). The axolotl is considered immunodeficient, but it is unclear how or to what extent MHC genetics and immunodeficiency are interrelated. To study the evolution of MHC genes in urodele amphibians, we describe for the first time an expressed polymorphic class II gene in wild tiger salamanders. We sequenced the PBR of a class II gene from wild A. tigrinum (n=33) and identified nine distinct alleles. Observed heterozygosity was 73%, and there were a total of 46 polymorphic sites, most of which correspond to amino acid positions that bind peptides. Patterns of nucleotide substitutions exhibit the signature of diversifying selection, but no recombination was detected. Not surprisingly, transspecies evolution of tiger salamander and axolotl class II alleles was apparent. We have no direct data on the immunodeficiency of tiger salamanders, but the levels of polymorphism in our study population should suffice to bind a variety of foreign peptides (unlike axolotls). Our tiger salamander data suggest that the monomorphism and immunodeficiencies associated with axolotl class II genes is a relict of their unique historical demography, not their phylogenetic legacy.
Hereditas | 2007
David H. Bos; Sara M. Turner; J. Andrew DeWoody
The direct sequencing of PCR products from diploid organisms is problematic because of ambiguities associated with phase inference in multi-site heterozygotes. Several molecular methods such as cloning, SSCP, and DGGE have been developed to empirically reduce diploid sequences to their constitutive haploid components, but in theory these empirical approaches can be supplanted by analytical treatment of diploid sequences. Analytical approaches are more desirable than molecular methods because of the added time and expense required to generate molecular data. A variety of analytical methods have been developed to address this issue, but few have been rigorously evaluated with empirical data. Furthermore, they all assume that the sequences under consideration are evolving in a neutral fashion and assume a moderate number of heterozygous sites. Here, we use non-neutral major histocompatibility complex (MHC) sequences comprised of large numbers of heterozygous sites that are under strong balancing selection to evaluate the performance of the popular Bayesian algorithm implemented by the program PHASE. Our results suggest that PHASE performs admirably with non-neutral sequences of moderate length with numerous heterozygous sites typical of MHC class II sequences. We conclude that analytical approaches to haplotype inference have great potential in large-scale population genetic assays, but recommend groundtruthing analytical results using empirical (molecular) approaches at the outset of population-level analyses.
Biology Letters | 2008
Rod N. Williams; David H. Bos; David Gopurenko; J. Andrew DeWoody
Inbreeding may lead to morphological malformations in a wide variety of taxa. We used genetic markers to evaluate whether malformed urodeles were more inbred and/or had less genetic diversity than normal salamanders. We captured 687 adult and 1259 larval tiger salamanders (Ambystoma tigrinum tigrinum), assessed each individual for gross malformations, and surveyed genetic variation among malformed and normal individuals using both cytoplasmic and nuclear markers. The most common malformations in both adults and larvae were brachydactyly, ectrodactyly and polyphalangy. The overall frequency of adults with malformations was 0.078 compared to 0.081 in larval samples. Genetic diversity was high in both normal and malformed salamanders, and there were no significant difference in measures of inbreeding (f and F), allele frequencies, mean individual heterozygosity or mean internal relatedness. Environmental contaminants or other extrinsic factors may lead to genome alternations that ultimately cause malformations, but our data indicate that inbreeding is not a causal mechanism.
BMC Genomics | 2009
David H. Bos; Chris Mayfield; Dennis J. Minchella
BackgroundNew chemotherapeutic agents against Schistosoma mansoni, an etiological agent of human schistosomiasis, are a priority due to the emerging drug resistance and the inability of current drug treatments to prevent reinfection. Proteases have been under scrutiny as targets of immunological or chemotherapeutic anti-Schistosoma agents because of their vital role in many stages of the parasitic life cycle. Function has been established for only a handful of identified S. mansoni proteases, and the vast majority of these are the digestive proteases; very few of the conserved classes of regulatory proteases have been identified from Schistosoma species, despite their vital role in numerous cellular processes. To that end, we identified protease protein coding genes from the S. mansoni genome project and EST library.ResultsWe identified 255 protease sequences from five catalytic classes using predicted proteins of the S. mansoni genome. The vast majority of these show significant similarity to proteins in KEGG and the Conserved Domain Database. Proteases include calpains, caspases, cytosolic and mitochondrial signal peptidases, proteases that interact with ubiquitin and ubiquitin-like molecules, and proteases that perform regulated intramembrane proteolysis. Comparative analysis of classes of important regulatory proteases find conserved active site domains, and where appropriate, signal peptides and transmembrane helices. Phylogenetic analysis provides support for inferring functional divergence among regulatory aspartic, cysteine, and serine proteases.ConclusionNumerous proteases are identified for the first time in S. mansoni. We characterized important regulatory proteases and focus analysis on these proteases to complement the growing knowledge base of digestive proteases. This work provides a foundation for expanding knowledge of proteases in Schistosoma species and examining their diverse function and potential as targets for new chemotherapies.
Immunogenetics | 2006
David H. Bos; Bruce Waldman
In the African clawed frog (Xenopus laevis), two deeply divergent allelic lineages of multiple genes of the class I MHC region have been discovered. For the MHC class I UAA locus, functional differences and the molecular basis for lineages maintenance are unknown. Alleles of linked class I region genes also exhibit strong disequilibrium with specific MHC alleles, but the underlying cause is not clear. We use MHC class Ia sequence data to estimate substitution rates and investigate structural differences between allelic lineages from protein models. Results indicate the operation of natural selection, and differences in the steric properties in the F pocket of the peptide-binding region among lineages. Variability in this pocket likely enables allelic lineages to bind very different sets of peptides and to interact differently with MHC chaperones in the endoplasmic reticulum. These results constitute evidence of the molecular evolutionary basis for 1) the maintenance of allelic lineages, 2) functional differences among lineages, and 3) strong linkage disequilibrium of allelic variants of class I region genes in X. laevis.
Journal of Molecular Evolution | 2008
Zafer Bulut; Cory R. McCORMICK; David H. Bos; J. Andrew DeWoody
Alternative splicing (AS) of mRNA transcripts is increasingly recognized as a source of transcriptome diversity. To date, most AS studies have focused either on comparisons across taxa or on intragenomic comparisons across gene families. We generated a novel data set that represents one of the first population genetic comparisons of AS across individuals. In ambystomatid salamanders, AS of the major histocompatibility complex (MHC) class IIβ gene (Amti-DAB) produces two transcripts, one full-length and one truncated. The full-length transcript is functional, but the truncated transcript is missing the critical β1 domain that forms half of the peptide binding region in the intact MHC class II molecule. We captured wild salamander larvae (Ambystoma tigrinum tigrinum) and genotyped them at Amti-DAB via DNA sequencing. From these same larvae, we extracted RNA from gill and spleen and evaluated the relative expression level of Amti-DAB in each tissue. Across individuals, 21% of the transcripts were truncated (alternatively spliced), and the absolute level of alternative transcript expression was higher in gill. The high level of nucleotide variation among seven Amti-DAB alleles provides the ability to detect substitutions (or linked DNA polymorphisms) that might have influenced AS. The data reveal no correlation between AS and haplotype, allele, or zygosity. However, indirect evidence (comparative expression patterns across 3 million years of evolution) suggests that the truncated Amti-DAB transcript may be functional and maintained by natural selection.
Genetica | 2009
Zafer Bulut; Cory R. McCORMICK; David Gopurenko; Rod N. Williams; David H. Bos; J. Andrew DeWoody