Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David H. Craig is active.

Publication


Featured researches published by David H. Craig.


The FASEB Journal | 2007

FAK association with multiple signal proteins mediates pressure-induced colon cancer cell adhesion via a Src-dependent PI3K/Akt pathway

Vijayalakshmi Thamilselvan; David H. Craig; Marc D. Basson

Cancer cell adhesion is traditionally viewed as random, occurring if the cells receptors match the substrate. Cancer cells are subjected to pressure and shear during growth against a constraining stroma, surgical manipulation, and passage through the venous and lymphatic system. Cells shed into a cavity such as the abdomen postoperatively also experience increased pressure from postoperative edema. Increased extracellular pressure stimulates integrin‐medi‐ated cancer cell adhesion via FAK and Src. PI 3‐kinase (PI3K) inhibitors (LY294002 or wortmannin), Akt inhibitors, or Aktl siRNA blocked adhesion stimulated by 15 mmHg pressure in SW620 or primary human malignant colonocytes. Pressure activated PI3K, tyrosine‐phosphorylated and membrane‐translocated the p85 subunit, and phosphorylated Akt. PI3K inhibitor (LY294002) prevented pressure‐stimulated Akt Ser473 and FAK Tyr397, but not FAK576 or Src416 phosphor‐ylation. PP2 inhibited PI3K activity and Akt phosphor‐ylation. FAK siRNA did not affect pressure‐induced PI3K activation but blocked Akt phosphorylation. Pressure also stimulated FAK or FAKY397F mutant translocation to the membrane. Akt inhibitor IV blocked pressure‐induced Akt and FAK translocation. Pressure activated Src‐ and PI3K‐dependently induced p85 interaction with FAK, and FAK with βl integrin. These results delineate a novel force‐activated inside‐out Src/ PI3K/FAK/Akt pathway by which cancer cells regulate their own adhesion. These signals may be potential targets for inhibition of metastatic adhesion.—Thamil‐selvan V., Craig D. H., Basson M. D. FAK association with multiple signal proteins mediates pressure‐induced colon cancer cell adhesion via a Src‐dependent PI3K/Akt pathway. FASEB J. 21, 1730–1741 (2007)


Journal of Biological Chemistry | 2009

Strain-induced Proliferation Requires the Phosphatidylinositol 3-Kinase/AKT/Glycogen Synthase Kinase Pathway

Christopher P. Gayer; Lakshmi S. Chaturvedi; Shouye Wang; David H. Craig; Thomas L. Flanigan; Marc D. Basson

The intestinal epithelium is repetitively deformed by shear, peristalsis, and villous motility. Such repetitive deformation stimulates the proliferation of intestinal epithelial cells on collagen or laminin substrates via ERK, but the upstream mediators of this effect are poorly understood. We hypothesized that the phosphatidylinositol 3-kinase (PI3K)/AKT cascade mediates this mitogenic effect. PI3K, AKT, and glycogen synthase kinase-3β (GSK-3β) were phosphorylated by 10 cycles/min strain at an average 10% deformation, and pharmacologic blockade of these molecules or reduction by small interfering RNA (siRNA) prevented the mitogenic effect of strain in Caco-2 or IEC-6 intestinal epithelial cells. Strain MAPK activation required PI3K but not AKT. AKT isoform-specific siRNA transfection demonstrated that AKT2 but not AKT1 is required for GSK-3β phosphorylation and the strain mitogenic effect. Furthermore, overexpression of AKT1 or an AKT chimera including the PH domain and hinge region of AKT2 and the catalytic domain and C-tail of AKT1 prevented strain activation of GSK-3β, but overexpression of AKT2 or a chimera including the PH domain and hinge region of AKT1 and the catalytic domain and C-tail of AKT2 did not. These data delineate a role for PI3K, AKT2, and GSK-3β in the mitogenic effect of strain. PI3K is required for both ERK and AKT2 activation, whereas AKT2 is sequentially required for GSK-3β. Furthermore, AKT2 specificity requires its catalytic domain and tail region. Manipulating this pathway may prevent mucosal atrophy and maintain the mucosal barrier in conditions such as ileus, sepsis, and prolonged fasting when peristalsis and villous motility are decreased and the mucosal barrier fails.


Journal of Clinical Investigation | 2008

Colchicine inhibits pressure-induced tumor cell implantation within surgical wounds and enhances tumor-free survival in mice

David H. Craig; Cheri R. Owen; William C. Conway; Mary F. Walsh; Christina Downey; Marc D. Basson

Iatrogenic tumor cell implantation within surgical wounds can compromise curative cancer surgery. Adhesion of cancer cells, in particular colon cancer cells, is stimulated by exposure to increased extracellular pressure through a cytoskeleton-dependent signaling mechanism requiring FAK, Src, Akt, and paxillin. Mechanical stimuli during tumor resection may therefore negatively impact patient outcome. We hypothesized that perioperative administration of colchicine, which prevents microtubule polymerization, could disrupt pressure-stimulated tumor cell adhesion to surgical wounds and enhance tumor-free survival. Ex vivo treatment of Co26 and Co51 colon cancer cells with colchicine inhibited pressure-stimulated cell adhesion to murine surgical wounds and blocked pressure-induced FAK and Akt phosphorylation. Surgical wound contamination with pressure-activated Co26 and Co51 cells significantly reduced tumor-free survival compared with contamination with tumor cells under ambient pressure. Mice treated with pressure-activated Co26 and Co51 cells from tumors preoperatively treated with colchicine in vivo displayed reduced surgical site implantation and significantly increased tumor-free survival compared with mice exposed to pressure-activated cells from tumors not pretreated with colchicine. Our data suggest that pressure activation of malignant cells promotes tumor development and impairs tumor-free survival and that perioperative colchicine administration or similar interventions may inhibit this effect.


Cancer Biology & Therapy | 2006

Extracellular pressure stimulates tumor cell adhesion in vitro by paxillin activation

J. van der Voort van Zyp; William C. Conway; David H. Craig; N. van der Voort van Zyp; Vijayalakshmi Thamilselvan; Marc D. Basson

Metastasizing colon cancer cells bind target tissues primarily via integrins. Extracellular pressure or shear stress stimulates integrin-mediated adhesion to matrix proteins or endothelial cells by activating the focal adhesion proteins FAK and Src. Because this effect is blocked by cytoskeletal perturbation and paxillin may link the cytoskeleton to the focal adhesion complex, we evaluated the role of paxillin in pressure-induced malignant colonocyte adhesion. We studied SW620 colon cancer cells and confirmed key results in Caco-2 colon cancer cells, primary human colon cancer cells, and murine colonic adenocarcinoma. We evaluated adhesion to collagen at ambient and 15 mmHg increased pressure after 30 minutes, and paxillin, FAK, and Src phosphorylation in suspended cells prior to adhesion. Some cells were treated with siRNA to paxillin or FAK, or the Src inhibitor PP2. We also compared pressure-induced signals in suspended cells with adhesion-induced signals after adhesion to collagen. Pressure stimulated adhesion and paxillin phosphorylation in SW620 and Caco-2 cells and human primary colon cancer cells. Pressure also increased paxillin phosphorylation in murine carcinoma cells. SiRNA to paxillin decreased SW620 and Caco-2 paxillin without altering basal levels of phosphorylated paxillin. Paxillin reduction decreased basal adhesion to collagen, and inhibited pressurestimulated adhesion, as well as paxillin, FAK397, FAK576, and Src476 phosphorylation. Neither PP2 nor siRNA to FAK inhibited induction of paxillin phosphorylation by pressure. In contrast, adhesion stimulated FAK, Src, and paxillin phosphorylation regardless of paxillin reduction. In summary, pressure induced paxillin phosphorylation in colon cancer cells. Paxillin reduction inhibited basal adhesion and blocked the pressure-mediated increase in adhesion, as well as pressure-induced FAK and Src signals, while adhesion-induced signals were preserved. Paxillin may be an upstream mediator of pressure-stimulated adhesion, important in metastasis.


Journal of Cellular Biochemistry | 2010

ERK regulates strain‐induced migration and proliferation from different subcellular locations

Christopher P. Gayer; David H. Craig; Thomas L. Flanigan; Thomas D. Reed; Dean E. Cress; Marc D. Basson

Repetitive deformation like that engendered by peristalsis or villous motility stimulates intestinal epithelial proliferation on collagenous substrates and motility across fibronectin, each requiring ERK. We hypothesized that ERK acts differently at different intracellular sites. We stably transfected Caco‐2 cells with ERK decoy expression vectors that permit ERK activation but interfere with its downstream signaling. Targeting sequences constrained the decoy inside or outside the nucleus. We assayed proliferation by cell counting and migration by circular wound closure with or without 10% repetitive deformation at 10 cycles/min. Confocal microscopy confirmed localization of the fusion proteins. Inhibition of phosphorylation of cytoplasmic RSK or nuclear Elk confirmed functionality. Both the nuclear‐localized and cytosolic‐localized ERK decoys prevented deformation‐induced proliferation on collagen. Deformation‐induced migration on fibronectin was prevented by constraining the decoy in the nucleus but not in the cytosol. Like the nuclear‐localized ERK decoy, a Sef‐overexpressing adenovirus that sequesters ERK in the cytoplasm also blocked the motogenic and mitogenic effects of strain. Inhibiting RSK or reducing Elk ablated both the mitogenic and motogenic effects of strain. RSK isoform reduction revealed isoform specificity. These results suggest that ERK must translocate to the nucleus to stimulate cell motility while ERK must act in both the cytosol and the nucleus to stimulate proliferation in response to strain. Selectively targeting ERK within different subcellular compartments may modulate or replace physical force effects on the intestinal mucosa to maintain the intestinal mucosal barrier in settings when peristalsis or villous motility are altered and fibronectin is deposited into injured tissue. J. Cell. Biochem. 109: 711–725, 2010. Published in 2010 Wiley‐Liss, Inc.


Cellular and Molecular Life Sciences | 2008

Pressure activates colon cancer cell adhesion via paxillin phosphorylation, Crk, Cas, and Rac1

Christina Downey; David H. Craig; Marc D. Basson

Abstract.Physical forces can activate colon cancer cell adhesion, critical for metastasis. Paxillin is phosphorylated by FAK and required for pressure-stimulated adhesion. However, whether paxillin acts as an inert scaffolding protein or whether paxillin phosphorylation is required is unknown. Transfection with paxillin point-phosphorylation mutants demonstrated that phosphorylation at tyrosines 31 and 118 together is necessary for pressure-stimulated adhesion. We further evaluated potential paxillin partners. Reducing the adaptor protein Crk or the focal adhesion protein p130Cas blocked pressure-stimulated adhesion. Furthermore, Crk and p130Cas both displayed increased co-immunoprecipitation with paxillin in response to increased pressure, except in cells transfected with a Y31Y118 paxillin mutant. Inhibiting the small GTPase Rac1 also abolished pressure-stimulated adhesion, and reducing paxillin by siRNA blocked Rac1 phosphorylation by pressure. Thus, paxillin phosphorylation at tyrosines 31 and 118 together is necessary for pressure-induced adhesion. Paxillin, Crk and Cas form a trimeric complex that activates Rac1 and mediates this effect.


Journal of Surgical Research | 2009

Irrigant divalent cation concentrations influence bacterial adhesion

Clarissa L. Dass; Mary F. Walsh; Sue Seo; Hiroe Shiratsuchi; David H. Craig; Marc D. Basson

BACKGROUND Surgical wounds are frequently contaminated by microbes, but rarely become infected if the bacterial burden is low, and irrigation is used to reduce contamination. Wound fluids are low in calcium and high in magnesium. We hypothesized that manipulating irrigant divalent cation concentrations might influence bacterial adhesion. METHODS Staphylococcus aureus, E. coli, and Pseudomonas aeruginosa were stained with fluorescent calcein AM before plating onto fibroblast monolayers, collagen I, or uncoated bacteriologic plastic. After 1 h, wells were washed with HEPES-buffered pH-balanced sterile water without or with 5 mM CaCl(2), 5 mM MgCl(2), or 1 mM EDTA+EGTA, and the remaining adherent bacteria were assayed fluorometrically. RESULTS Supplementing the irrigation with magnesium or chelators increased but calcium-supplemented irrigation reduced bacterial adhesion to collagen or fibroblasts. Nonspecific electrostatic bacterial adhesion to uncoated plastic was unaffected by calcium. CONCLUSION Bacterial adhesion to mammalian cells and matrix proteins is influenced by divalent cations, and pathogenic bacteria may be adapted to adhere under the low calcium high magnesium conditions in wounds. Although these results await confirmation for other bacteria, and in vivo validation and safety-testing, they suggest that supplementing wound irrigation with 5 mM CaCl(2) may reduce bacterial adhesion and subsequent wound infection.


Cell Cycle | 2009

Biological impact of mechanical stimuli on tumor metastasis

David H. Craig; Marc D. Basson

Increasing evidence suggests tumor cell exposure to mechanical stimuli during the perioperative period as well as throughout the normal disease process may have a discernable impact on tumor metastasis and patient outcome. In vitro studies have demonstrated that transient exposure to increased extracellular pressure and shear forces modulates integrin binding affinity and stimulates cancer cell adhesion through a cytoskeleton- and focal adhesion complex-dependent signaling mechanism. More prolonged exposure to elevated pressures stimulates tumor cell proliferation by a distinct signaling pathway. Whether pressure effects on cell adhesion and proliferation pose biological ramifications in vivo remained unknown. We recently reported that pressure activation of malignant cells does indeed have a biological impact on surgical wound implantation, tumor development, and tumor-free survival in a murine colon tumor model. Moreover, this effect can be disrupted by preoperative administration of colchicine. Taken together with previous work from our laboratory and others, these findings suggest that further elucidation of the mechanical signaling pathways governing pressure-stimulated tumor cell adhesion and proliferation may identify novel therapeutic targets for the treatment and prevention of tumor metastasis.


American Journal of Surgery | 2009

β1 integrin mediates pressure-stimulated phagocytosis

Sean Bhalla; Hiroe Shiratsuchi; David H. Craig; Marc D. Basson

BACKGROUND Extracellular pressure alterations in infection, inflammation, or positive pressure ventilation may influence macrophage phagocytosis. We hypothesized that pressure modulates beta1-integrins to stimulate phagocytosis. METHODS We assayed fibroblast phagocytosis of fluorescent latex beads at ambient or 20 mm Hg increased pressure, and macrophage integrin phosphorylation by Western blot. RESULTS Pressure did not alter phagocytosis in beta(1)-integrin null GD25 fibroblasts, but stimulated phagocytosis in fibroblasts expressing wild-type beta(1)-integrin. In phorbol myristate acetate-differentiated THP-1 macrophages, pressure stimulated beta(1)-integrin T788/789 phosphorylation, but not S785 phosphorylation. Furthermore, pressure stimulated phagocytosis in cells expressing an inactivating S785A point mutation or a T788D substitution to mimic a constitutively phosphorylated threonine, but not in cells expressing an inactivating TT788/9AA mutation. CONCLUSIONS The effects of pressure on phagocytosis are not limited to macrophages but generalize to other phagocytic cells. These results suggest that pressure stimulates phagocytosis via increasing beta(1)-integrin T789 phosphorylation. Interventions that target beta(1)-integrin threonine 789 phosphorylation may modulate phagocytic function.


Biochemical and Biophysical Research Communications | 2009

Increased extracellular pressure provides a novel adjuvant stimulus for enhancement of conventional dendritic cell maturation strategies

David H. Craig; Hiroe Shiratsuchi; Marc D. Basson

Dendritic cell (DC)-based vaccine strategies have gained increasing popularity in recent years. Methods for ex vivo generation of immunocompetent mature DCs still require optimization. DCs have been shown to phenotypically mature under elevated pressure. We compared the effects of pressure on DC maturation with LPS- and cytokine-stimulation. Human monocyte-derived immature or LPS- and cytokine-matured DCs were exposed to ambient or 40 mmHg increased pressure for 12h, then assessed for expression of CD80, CD86, CD40, MHC-I/II, and inflammatory cytokine production. DCs were also evaluated for capacity to stimulate T-cell proliferation by co-culture with allogeneic lymphocytes. Pressure significantly increased cytokine production and expression of all surface molecules on immature DC other than MHC-I and CD40. Pressure/LPS-treated DCs displayed further upregulation of MHC-I, CD40, and IL-12p70. Cytokine-matured DCs appeared less responsive to pressure. T-cell proliferation correlated with MHC expression. Results suggest mechanical stimulation of DCs may provide a useful adjuvant to TLR-agonist maturation strategies.

Collaboration


Dive into the David H. Craig's collaboration.

Top Co-Authors

Avatar

Marc D. Basson

University of North Dakota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher P. Gayer

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge