Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David H. Ledbetter is active.

Publication


Featured researches published by David H. Ledbetter.


Neuron | 2011

Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism

Stephan J. Sanders; A. Gulhan Ercan-Sencicek; Vanessa Hus; Rui Luo; Daniel Moreno-De-Luca; Su H. Chu; Michael P. Moreau; Abha R. Gupta; Susanne Thomson; Christopher E. Mason; Kaya Bilguvar; Patrícia B. S. Celestino-Soper; Murim Choi; Emily L. Crawford; Lea K. Davis; Nicole R. Davis Wright; Rahul M. Dhodapkar; Michael DiCola; Nicholas M. DiLullo; Thomas V. Fernandez; Vikram Fielding-Singh; Daniel O. Fishman; Stephanie Frahm; Rouben Garagaloyan; Gerald Goh; Sindhuja Kammela; Lambertus Klei; Jennifer K. Lowe; Sabata C. Lund; Anna D. McGrew

We have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6-12.0, p = 2.4 × 10(-7)). We estimate there are 130-234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1.


Neuron | 2015

Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci

Stephan J. Sanders; Xin He; A. Jeremy Willsey; A. Gulhan Ercan-Sencicek; Kaitlin E. Samocha; A. Ercument Cicek; Vanessa Hus Bal; Somer L. Bishop; Shan Dong; Arthur P. Goldberg; Cai Jinlu; John F. Keaney; Lambertus Klei; Jeffrey D. Mandell; Daniel Moreno-De-Luca; Christopher S. Poultney; Elise B. Robinson; Louw Smith; Tor Solli-Nowlan; Mack Y. Su; Nicole A. Teran; Michael F. Walker; Donna M. Werling; Arthur L. Beaudet; Rita M. Cantor; Eric Fombonne; Daniel H. Geschwind; Dorothy E. Grice; Catherine Lord; Jennifer K. Lowe

Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1).


Molecular Autism | 2012

Common genetic variants, acting additively, are a major source of risk for autism.

Lambertus Klei; Stephan J. Sanders; Vanessa Hus; Jennifer K. Lowe; A. Jeremy Willsey; Daniel Moreno-De-Luca; Eric Fombonne; Daniel H. Geschwind; Dorothy E. Grice; David H. Ledbetter; Catherine Lord; Shrikant Mane; Christa Lese Martin; Donna M. Martin; Eric M. Morrow; Christopher A. Walsh; Nadine M. Melhem; Pauline Chaste; James S. Sutcliffe; Matthew W. State; Edwin H. Cook; Kathryn Roeder; Bernie Devlin

BackgroundAutism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals.MethodsBy using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status.ResultsBy analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating.ConclusionsOur results, when viewed in the context of results from genome-wide association studies, demonstrate that a myriad of common variants of very small effect impacts ASD liability.


Lancet Neurology | 2013

Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence.

Andres Moreno-De-Luca; Scott M. Myers; Thomas D. Challman; Daniel Moreno-De-Luca; David W. Evans; David H. Ledbetter

Neurodevelopmental disorders can be caused by many different genetic abnormalities that are individually rare but collectively common. Specific genetic causes, including certain copy number variants and single-gene mutations, are shared among disorders that are thought to be clinically distinct. This evidence of variability in the clinical manifestations of individual genetic variants and sharing of genetic causes among clinically distinct brain disorders is consistent with the concept of developmental brain dysfunction, a term we use to describe the abnormal brain function underlying a group of neurodevelopmental and neuropsychiatric disorders and to encompass a subset of various clinical diagnoses. Although many pathogenic genetic variants are currently thought to be variably penetrant, we hypothesise that when disorders encompassed by developmental brain dysfunction are considered as a group, the penetrance will approach 100%. The penetrance is also predicted to approach 100% when the phenotype being considered is a specific trait, such as intelligence or autistic-like social impairment, and the trait could be assessed using a continuous, quantitative measure to compare probands with non-carrier family members rather than a qualitative, dichotomous trait and comparing probands with the healthy population.


The New England Journal of Medicine | 2016

Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease

Frederick E. Dewey; Gusarova; Colm O'Dushlaine; Omri Gottesman; Trejos J; Hunt C; Van Hout Cv; Lukas Habegger; David R. Buckler; Lai Km; Joseph B. Leader; Michael F. Murray; Ritchie; Kirchner Hl; David H. Ledbetter; John S. Penn; Alexander E. Lopez; Ingrid B. Borecki; John D. Overton; Jeffrey G. Reid; David J. Carey; Andrew J. Murphy; George D. Yancopoulos; Aris Baras; Jesper Gromada; Alan R. Shuldiner

BACKGROUNDnHigher-than-normal levels of circulating triglycerides are a risk factor for ischemic cardiovascular disease. Activation of lipoprotein lipase, an enzyme that is inhibited by angiopoietin-like 4 (ANGPTL4), has been shown to reduce levels of circulating triglycerides.nnnMETHODSnWe sequenced the exons of ANGPTL4 in samples obtain from 42,930 participants of predominantly European ancestry in the DiscovEHR human genetics study. We performed tests of association between lipid levels and the missense E40K variant (which has been associated with reduced plasma triglyceride levels) and other inactivating mutations. We then tested for associations between coronary artery disease and the E40K variant and other inactivating mutations in 10,552 participants with coronary artery disease and 29,223 controls. We also tested the effect of a human monoclonal antibody against ANGPTL4 on lipid levels in mice and monkeys.nnnRESULTSnWe identified 1661 heterozygotes and 17 homozygotes for the E40K variant and 75 participants who had 13 other monoallelic inactivating mutations in ANGPTL4. The levels of triglycerides were 13% lower and the levels of high-density lipoprotein (HDL) cholesterol were 7% higher among carriers of the E40K variant than among noncarriers. Carriers of the E40K variant were also significantly less likely than noncarriers to have coronary artery disease (odds ratio, 0.81; 95% confidence interval, 0.70 to 0.92; P=0.002). K40 homozygotes had markedly lower levels of triglycerides and higher levels of HDL cholesterol than did heterozygotes. Carriers of other inactivating mutations also had lower triglyceride levels and higher HDL cholesterol levels and were less likely to have coronary artery disease than were noncarriers. Monoclonal antibody inhibition of Angptl4 in mice and monkeys reduced triglyceride levels.nnnCONCLUSIONSnCarriers of E40K and other inactivating mutations in ANGPTL4 had lower levels of triglycerides and a lower risk of coronary artery disease than did noncarriers. The inhibition of Angptl4 in mice and monkeys also resulted in corresponding reductions in these values. (Funded by Regeneron Pharmaceuticals.).


The New England Journal of Medicine | 2017

Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease

Frederick E. Dewey; Viktoria Gusarova; Richard L. Dunbar; Colm O’Dushlaine; Omri Gottesman; Shane McCarthy; Cristopher V. Van Hout; Shannon Bruse; Hayes M. Dansky; Joseph B. Leader; Michael F. Murray; Marylyn D. Ritchie; H. Lester Kirchner; Lukas Habegger; Alex Lopez; John S. Penn; An Zhao; Weiping Shao; Neil Stahl; Andrew J. Murphy; Sara C. Hamon; Aurelie Bouzelmat; Rick Zhang; Brad Shumel; Robert Pordy; Daniel A. Gipe; Gary A. Herman; Wayne H-H Sheu; I-Te Lee; Kae-Woei Liang

BACKGROUND Loss‐of‐function variants in the angiopoietin‐like 3 gene (ANGPTL3) have been associated with decreased plasma levels of triglycerides, low‐density lipoprotein (LDL) cholesterol, and high‐density lipoprotein (HDL) cholesterol. It is not known whether such variants or therapeutic antagonism of ANGPTL3 are associated with a reduced risk of atherosclerotic cardiovascular disease. METHODS We sequenced the exons of ANGPTL3 in 58,335 participants in the DiscovEHR human genetics study. We performed tests of association for loss‐of‐function variants in ANGPTL3 with lipid levels and with coronary artery disease in 13,102 case patients and 40,430 controls from the DiscovEHR study, with follow‐up studies involving 23,317 case patients and 107,166 controls from four population studies. We also tested the effects of a human monoclonal antibody, evinacumab, against Angptl3 in dyslipidemic mice and against ANGPTL3 in healthy human volunteers with elevated levels of triglycerides or LDL cholesterol. RESULTS In the DiscovEHR study, participants with heterozygous loss‐of‐function variants in ANGPTL3 had significantly lower serum levels of triglycerides, HDL cholesterol, and LDL cholesterol than participants without these variants. Loss‐of‐function variants were found in 0.33% of case patients with coronary artery disease and in 0.45% of controls (adjusted odds ratio, 0.59; 95% confidence interval, 0.41 to 0.85; P=0.004). These results were confirmed in the follow‐up studies. In dyslipidemic mice, inhibition of Angptl3 with evinacumab resulted in a greater decrease in atherosclerotic lesion area and necrotic content than a control antibody. In humans, evinacumab caused a dose‐dependent placebo‐adjusted reduction in fasting triglyceride levels of up to 76% and LDL cholesterol levels of up to 23%. CONCLUSIONS Genetic and therapeutic antagonism of ANGPTL3 in humans and of Angptl3 in mice was associated with decreased levels of all three major lipid fractions and decreased odds of atherosclerotic cardiovascular disease. (Funded by Regeneron Pharmaceuticals and others; ClinicalTrials.gov number, NCT01749878.)


Biological Psychiatry | 2015

The Cognitive and Behavioral Phenotype of the 16p11.2 Deletion in a Clinically Ascertained Population

Ellen Hanson; Raphael Bernier; Ken Porche; Frank I. Jackson; Robin P. Goin-Kochel; LeeAnne Green Snyder; Anne V. Snow; Arianne Stevens Wallace; Katherine L. Campe; Yuan Zhang; Qixuan Chen; Debra D’Angelo; Andres Moreno-De-Luca; Patrick T. Orr; K. B. Boomer; David W. Evans; Stephen M. Kanne; Leandra Berry; Fiona Miller; Jennifer Olson; Elliot Sherr; Christa Lese Martin; David H. Ledbetter; John E. Spiro; Wendy K. Chung

BACKGROUNDnDeletion of the recurrent ~600 kb BP4-BP5 chromosomal region 16p11.2 has been associated with a wide range of neurodevelopmental outcomes.nnnMETHODSnTo clarify the phenotype of 16p11.2 deletion, we examined the psychiatric and developmental presentation of predominantly clinically referred individuals, with a particular emphasis on broader autism phenotype characteristics in individuals with recurrent ~600 kb chromosome 16p11.2 deletions. Using an extensive standardized assessment battery across three clinical sites, 85 individuals with the 16p11.2 deletion and 153 familial control subjects were evaluated for symptom presentation and clinical diagnosis.nnnRESULTSnIndividuals with the 16p11.2 deletion presented with a high frequency of psychiatric and developmental disorders (>90%). The most commonly diagnosed conditions were developmental coordination disorder, phonologic processing disorder, expressive and receptive language disorders (71% of individuals >3 years old with a speech and language-related disorder), and autism spectrum disorder. Individuals with the 16p11.2 deletion not meeting diagnostic criteria for autism spectrum disorder had a significantly higher prevalence of autism-related characteristics compared with the familial noncarrier control group. Individuals with the 16p11.2 deletion had a range of intellectual ability, but IQ scores were 26 points lower than noncarrier family members on average.nnnCONCLUSIONSnClinically referred individuals with the 16p11.2 deletion have high rates of psychiatric and developmental disorders and provide a genetically well-defined group to study the emergence of developmental difficulties, particularly associated with the broader autism phenotype.


Science | 2016

Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study

Frederick E. Dewey; Michael F. Murray; John D. Overton; Lukas Habegger; Joseph B. Leader; Samantha N. Fetterolf; Colm O’Dushlaine; Cristopher V. Van Hout; Jeffrey Staples; Claudia Gonzaga-Jauregui; Raghu Metpally; Sarah A. Pendergrass; Monica A. Giovanni; H. Lester Kirchner; Suganthi Balasubramanian; Noura S. Abul-Husn; Dustin N. Hartzel; Daniel R. Lavage; Korey A. Kost; Jonathan S. Packer; Alexander E. Lopez; John Penn; Semanti Mukherjee; Nehal Gosalia; Manoj Kanagaraj; Alexander H. Li; Lyndon J. Mitnaul; Lance J. Adams; Thomas N. Person; Kavita Praveen

Unleashing the power of precision medicine Precision medicine promises the ability to identify risks and treat patients on the basis of pathogenic genetic variation. Two studies combined exome sequencing results for over 50,000 people with their electronic health records. Dewey et al. found that ∼3.5% of individuals in their cohort had clinically actionable genetic variants. Many of these variants affected blood lipid levels that could influence cardiovascular health. Abul-Husn et al. extended these findings to investigate the genetics and treatment of familial hypercholesterolemia, a risk factor for cardiovascular disease, within their patient pool. Genetic screening helped identify at-risk patients who could benefit from increased treatment. Science, this issue p. 10.1126/science.aaf6814, p. 10.1126/science.aaf7000 More than 50,000 exomes, coupled with electronic health records, inform on medically relevant genetic variants. INTRODUCTION Large-scale genetic studies of integrated health care populations, with phenotypic data captured natively in the documentation of clinical care, have the potential to unveil genetic associations that point the way to new biology and therapeutic targets. This setting also represents an ideal test bed for the implementation of genomics in routine clinical care in service of precision medicine. RATIONALE The DiscovEHR collaboration between the Regeneron Genetics Center and Geisinger Health System aims to catalyze genomic discovery and precision medicine by coupling high-throughput exome sequencing to longitudinal electronic health records (EHRs) of participants in Geisinger’s MyCode Community Health Initiative. Here, we describe initial insights from whole-exome sequencing of 50,726 adult participants of predominantly European ancestry using clinical phenotypes derived from EHRs. RESULTS The median duration of EHR data associated with sequenced participants was 14 years, with a median of 87 clinical encounters, 687 laboratory tests, and seven procedures per participant. Forty-eight percent of sequenced individuals had one or more first- or second-degree relatives in the sample, and genome-wide autozygosity was similar to other outbred European populations. We found ~4.2 million single-nucleotide variants and insertion/deletion events, of which ~176,000 are predicted to result in loss of gene function (LoF). The overwhelming majority of these genetic variants occurred at a minor allele frequency of ≤1%, and more than half were singletons. Each participant harbored a median of 21 rare predicted LoFs. At this sample size, ~92% of sequenced genes, including genes that encode existing drug targets or confer risk for highly penetrant genetic diseases, harbor rare heterozygous predicted LoF variants. About 7% of sequenced genes contained rare homozygous predicted LoF variants in at least one individual. Linking these data to EHR-derived laboratory phenotypes revealed consequences of partial or complete LoF in humans. Among these were previously unidentified associations between predicted LoFs in CSF2RB and basophil and eosinophil counts, and EGLN1-associated erythrocytosis segregating in genetically identified family networks. Using predicted LoFs as a model for drug target antagonism, we found associations supporting the majority of therapeutic targets for lipid lowering. To highlight the opportunity for genotype-phenotype association discovery, we performed exome-wide association analyses of EHR-derived lipid values, newly implicating rare predicted LoFs, and deleterious missense variants in G6PC in association with triglyceride levels. In a survey of 76 clinically actionable disease-associated genes, we estimated that 3.5% of individuals harbor pathogenic or likely pathogenic variants that meet criteria for clinical action. Review of the EHR uncovered findings associated with the monogenic condition in ~65% of pathogenic variant carriers’ medical records. CONCLUSION The findings reported here demonstrate the value of large-scale sequencing in an integrated health system population, add to the knowledge base regarding the phenotypic consequences of human genetic variation, and illustrate the challenges and promise of genomic medicine implementation. DiscovEHR provides a blueprint for large-scale precision medicine initiatives and genomics-guided therapeutic target discovery. Therapeutic target validation and genomic medicine in DiscovEHR. (A) Associations between predicted LoF variants in lipid drug target genes and lipid levels. Boxes correspond to effect size, given as the absolute value of effect, in SD units; whiskers denote 95% confidence intervals for effect. The size of the box is proportional to the logarithm (base 10) of predicted LoF carriers. (B and C) Prevalence and expressivity of clinically actionable genetic variants in 76 disease genes, according to EHR data. G76, Geisinger-76. The DiscovEHR collaboration between the Regeneron Genetics Center and Geisinger Health System couples high-throughput sequencing to an integrated health care system using longitudinal electronic health records (EHRs). We sequenced the exomes of 50,726 adult participants in the DiscovEHR study to identify ~4.2 million rare single-nucleotide variants and insertion/deletion events, of which ~176,000 are predicted to result in a loss of gene function. Linking these data to EHR-derived clinical phenotypes, we find clinical associations supporting therapeutic targets, including genes encoding drug targets for lipid lowering, and identify previously unidentified rare alleles associated with lipid levels and other blood level traits. About 3.5% of individuals harbor deleterious variants in 76 clinically actionable genes. The DiscovEHR data set provides a blueprint for large-scale precision medicine initiatives and genomics-guided therapeutic discovery.


Science | 2016

Genetic identification of familial hypercholesterolemia within a single U.S. health care system

Noura S. Abul-Husn; Kandamurugu Manickam; Laney K. Jones; Eric A. Wright; Dustin N. Hartzel; Claudia Gonzaga-Jauregui; Colm O’Dushlaine; Joseph B. Leader; H. Lester Kirchner; D’Andra M. Lindbuchler; Marci L Barr; Monica A. Giovanni; Marylyn D. Ritchie; John D. Overton; Jeffrey G. Reid; Raghu Metpally; Amr H. Wardeh; Ingrid B. Borecki; George D. Yancopoulos; Aris Baras; Alan R. Shuldiner; Omri Gottesman; David H. Ledbetter; David J. Carey; Frederick E. Dewey; Michael F. Murray

Unleashing the power of precision medicine Precision medicine promises the ability to identify risks and treat patients on the basis of pathogenic genetic variation. Two studies combined exome sequencing results for over 50,000 people with their electronic health records. Dewey et al. found that ∼3.5% of individuals in their cohort had clinically actionable genetic variants. Many of these variants affected blood lipid levels that could influence cardiovascular health. Abul-Husn et al. extended these findings to investigate the genetics and treatment of familial hypercholesterolemia, a risk factor for cardiovascular disease, within their patient pool. Genetic screening helped identify at-risk patients who could benefit from increased treatment. Science, this issue p. 10.1126/science.aaf6814, p. 10.1126/science.aaf7000 Genomic screening can prompt the diagnosis of familial hypercholesterolemia patients, the majority of whom are receiving inadequate lipid-lowering therapy. INTRODUCTION Familial hypercholesterolemia (FH) is a public health genomics priority but remains underdiagnosed and undertreated despite widespread cholesterol screening. This represents a missed opportunity to prevent FH-associated cardiovascular morbidity and mortality. Pathogenic variants in three genes (LDLR, APOB, and PCSK9) account for the majority of FH cases. We assessed the prevalence and clinical impact of FH-associated genomic variants in 50,726 individuals from the MyCode Community Health Initiative at Geisinger Health System who underwent exome sequencing as part of the DiscovEHR human genetics collaboration with the Regeneron Genetics Center. RATIONALE Genetic testing for FH is uncommon in clinical practice in the United States, and the prevalence of FH variants in U.S. populations has not been well established. We sought to evaluate FH prevalence in a large integrated U.S. health care system using genomic sequencing and electronic health record (EHR) data. We determined the impact of FH variants on low-density lipoprotein cholesterol (LDL-C) levels and coronary artery disease (CAD) risk. We assessed the likelihood of FH variant carriers achieving a presequencing EHR-based FH diagnosis according to established clinical diagnostic criteria. Finally, we examined the rates of statin medication use and outcomes in FH variant carriers. RESULTS Thirty-five known and predicted pathogenic variants in LDLR, APOB, and PCSK9 were identified in 229 individuals. The estimated FH prevalence was 1:256 in unselected participants and 1:118 in participants ascertained via the cardiac catheterization laboratory. FH variants were found in only 2.5% of individuals with severe hypercholesterolemia (maximum EHR-documented LDL-C ≥ 190 mg/dl) in the cohort, and a maximum LDL-C of ≥190 mg/dl was absent in 45% of FH variant carriers. Overall, FH variant carriers had 69 ± 3 mg/dl greater maximum LDL-C than sequenced noncarriers (P = 1.8 × 10−20) and had significantly increased odds of general and premature CAD [odds ratio (OR), 2.6 (P = 4.3 × 10−11) and 3.7 (P = 5.5 × 10−14), respectively]. The increased odds of general and premature CAD were most pronounced in carriers of LDLR predicted loss-of-function variants [OR, 5.5 (P = 7.7 × 10−13) and 10.3 (P = 9.8 × 10−19), respectively]. Fourteen FH variant carriers were deceased; chart review revealed that none of these individuals had a clinical diagnosis of FH. Before genetic testing, only 15% of FH variant carriers had an ICD-10 (International Classification of Diseases, 10th revision) diagnosis code for pure hypercholesterolemia or had been seen in a lipid clinic, suggesting that few had been previously diagnosed with FH. Retrospectively applying Dutch Lipid Clinic Network diagnostic criteria to EHR data, we found presequencing criteria supporting a probable or definite clinical diagnosis of FH in 24% of FH variant carriers, highlighting the limitations of using existing clinical criteria for EHR-based screening in the absence of genetic testing. Active statin use was identified in 58% and high-intensity statin use in 37% of FH variant carriers. Only 46% of carriers currently on statin therapy had a most recent LDL-C level below 100 mg/dl compared to 77% of noncarriers. CONCLUSION In summary, we show that large-scale genomic screening in patients with longitudinal EHR data has the ability to detect FH, uncover and characterize novel pathogenic variants, determine disease prevalence, and enhance overall knowledge of clinical impact and outcomes. The 1:256 prevalence of FH variants in this predominantly European-American cohort is in line with prevalence estimates from recent work in European cohorts. Our findings highlight the undertreatment of FH variant carriers and demonstrate a potential clinical benefit for large-scale sequencing initiatives in service of precision medicine. Prevalence and clinical impact of FH variants in a large U.S. clinical care cohort. (A) Distribution of 229 heterozygous carriers of an FH variant in the DiscovEHR cohort by FH gene. (B) Prevalence of an FH variant in the DiscovEHR cohort and according to recruitment site


Human Mutation | 2012

The Introduction of Arrays in Prenatal Diagnosis : A Special Challenge

Annalisa Vetro; Katelijne Bouman; Ros Hastings; Dominic McMullan; Joris Vermeesch; Konstantin Miller; Birgit Sikkema-Raddatz; David H. Ledbetter; Orsetta Zuffardi; Conny M. A. van Ravenswaaij-Arts

Genome‐wide arrays are rapidly replacing conventional karyotyping in postnatal cytogenetic diagnostics and there is a growing request for arrays in the prenatal setting. Several studies have documented 1–3% additional abnormal findings in prenatal diagnosis with arrays compared to conventional karyotyping. A recent meta‐analysis demonstrated that 5.2% extra diagnoses can be expected in fetuses with ultrasound abnormalities. However, no consensus exists as to whether the use of genome‐wide arrays should be restricted to pregnancies with ultrasound abnormalities, performed in all women undergoing invasive prenatal testing or offered to all pregnant women. Moreover, the interpretation of array results in the prenatal situation is challenging due to the large numbers of copy number variants with no major phenotypic effect. This also raises the question of what, or what not to report, for example, how to deal with unsolicited findings. These issues were discussed at a working group meeting that preceded the European Society of Human Genetics 2011 Conference in Amsterdam. This article is the result of this meeting and explores the introduction of genome‐wide arrays into routine prenatal diagnosis. We aim to give some general recommendations on how to develop practical guidelines that can be implemented in the local setting and that are consistent with the emerging international consensus. Hum Mutat 33:923–929, 2012.

Collaboration


Dive into the David H. Ledbetter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge