Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David H. Spencer is active.

Publication


Featured researches published by David H. Spencer.


Nature | 2000

Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen.

Stover Ck; X. Q. Pham; A. L. Erwin; S. D. Mizoguchi; P. Warrener; M. J. Hickey; Fiona S. L. Brinkman; W. O. Hufnagle; D. J. Kowalik; M. Lagrou; R. L. Garber; L. Goltry; E. Tolentino; S. Westbrock-Wadman; Ye Yuan; L. L. Brody; S. N. Coulter; K. R. Folger; Arnold Kas; K. Larbig; Regina Lim; Kelly D. Smith; David H. Spencer; Gane Ka-Shu Wong; Zhigang Wu; Ian T. Paulsen; Jonathan Reizer; Milton H. Saier; Robert E. W. Hancock; Stephen Lory

Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the top three causes of opportunistic human infections. A major factor in its prominence as a pathogen is its intrinsic resistance to antibiotics and disinfectants. Here we report the complete sequence of P. aeruginosa strain PAO1. At 6.3 million base pairs, this is the largest bacterial genome sequenced, and the sequence provides insights into the basis of the versatility and intrinsic drug resistance of P. aeruginosa. Consistent with its larger genome size and environmental adaptability, P. aeruginosa contains the highest proportion of regulatory genes observed for a bacterial genome and a large number of genes involved in the catabolism, transport and efflux of organic compounds as well as four potential chemotaxis systems. We propose that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Comprehensive transposon mutant library of Pseudomonas aeruginosa

Michael A. Jacobs; Ashley Alwood; Iyarit Thaipisuttikul; David H. Spencer; Eric Haugen; Stephen Ernst; Oliver Will; Rajinder Kaul; Christopher K. Raymond; Ruth Levy; Liu Chun-Rong; Donald Guenthner; Donald Bovee; Maynard V. Olson; Colin Manoil

We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.


Molecular Microbiology | 2007

Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients

David A. D'Argenio; Manhong Wu; Lucas R. Hoffman; Hemantha D. Kulasekara; Eric Déziel; Eric E. Smith; Hai Nguyen; Robert K. Ernst; Theodore Larson Freeman; David H. Spencer; M. Brittnacher; Hillary S. Hayden; Sara Selgrade; Mikkel Klausen; David R. Goodlett; Jane L. Burns; Bonnie W. Ramsey; Samuel I. Miller

The opportunistic pathogen Pseudomonas aeruginosa undergoes genetic change during chronic airway infection of cystic fibrosis (CF) patients. One common change is a mutation inactivating lasR, which encodes a transcriptional regulator that responds to a homoserine lactone signal to activate expression of acute virulence factors. Colonies of lasR mutants visibly accumulated the iridescent intercellular signal 4‐hydroxy‐2‐heptylquinoline. Using this colony phenotype, we identified P. aeruginosa lasR mutants that emerged in the airway of a CF patient early during chronic infection, and during growth in the laboratory on a rich medium. The lasR loss‐of‐function mutations in these strains conferred a growth advantage with particular carbon and nitrogen sources, including amino acids, in part due to increased expression of the catabolic pathway regulator CbrB. This growth phenotype could contribute to selection of lasR mutants both on rich medium and within the CF airway, supporting a key role for bacterial metabolic adaptation during chronic infection. Inactivation of lasR also resulted in increased β‐lactamase activity that increased tolerance to ceftazidime, a widely used β‐lactam antibiotic. Loss of LasR function may represent a marker of an early stage in chronic infection of the CF airway with clinical implications for antibiotic resistance and disease progression.


Cancer Cell | 2014

Functional Heterogeneity of Genetically Defined Subclones in Acute Myeloid Leukemia

Jeffery M. Klco; David H. Spencer; Christopher A. Miller; Malachi Griffith; Tamara Lamprecht; Michelle O’Laughlin; Catrina C. Fronick; Vincent Magrini; Ryan Demeter; Robert S. Fulton; William C. Eades; Daniel C. Link; Timothy A. Graubert; Matthew J. Walter; Elaine R. Mardis; John F. DiPersio; Richard Wilson; Timothy J. Ley

The relationships between clonal architecture and functional heterogeneity in acute myeloid leukemia (AML) samples are not yet clear. We used targeted sequencing to track AML subclones identified by whole-genome sequencing using a variety of experimental approaches. We found that virtually all AML subclones trafficked from the marrow to the peripheral blood, but some were enriched in specific cell populations. Subclones showed variable engraftment potential in immunodeficient mice. Xenografts were predominantly comprised of a single genetically defined subclone, but there was no predictable relationship between the engrafting subclone and the evolutionary hierarchy of the leukemia. These data demonstrate the importance of integrating genetic and functional data in studies of primary cancer samples, both in xenograft models and in patients.


Journal of Bacteriology | 2003

Whole-Genome Sequence Variation among Multiple Isolates of Pseudomonas aeruginosa

David H. Spencer; Arnold Kas; Eric E. Smith; Christopher K. Raymond; Elizabeth H. Sims; Michele D. Hastings; Jane L. Burns; Rajinder Kaul; Maynard V. Olson

Whole-genome shotgun sequencing was used to study the sequence variation of three Pseudomonas aeruginosa isolates, two from clonal infections of cystic fibrosis patients and one from an aquatic environment, relative to the genomic sequence of reference strain PAO1. The majority of the PAO1 genome is represented in these strains; however, at least three prominent islands of PAO1-specific sequence are apparent. Conversely, approximately 10% of the sequencing reads derived from each isolate fail to align with the PAO1 backbone. While average sequence variation among all strains is roughly 0.5%, regions of pronounced differences were evident in whole-genome scans of nucleotide diversity. We analyzed two such divergent loci, the pyoverdine and O-antigen biosynthesis regions, by complete resequencing. A thorough analysis of isolates collected over time from one of the cystic fibrosis patients revealed independent mutations resulting in the loss of O-antigen synthesis alternating with a mucoid phenotype. Overall, we conclude that most of the PAO1 genome represents a core P. aeruginosa backbone sequence while the strains addressed in this study possess additional genetic material that accounts for at least 10% of their genomes. Approximately half of these additional sequences are novel.


The Journal of Molecular Diagnostics | 2014

Validation of a Next-Generation Sequencing Assay for Clinical Molecular Oncology

Catherine E. Cottrell; Hussam Al-Kateb; Andrew J. Bredemeyer; Eric J. Duncavage; David H. Spencer; Haley J. Abel; Christina M. Lockwood; Ian S. Hagemann; Stephanie M. O’Guin; Lauren C. Burcea; Christopher S. Sawyer; Dayna M. Oschwald; Jennifer L. Stratman; Dorie A. Sher; Mark R. Johnson; Justin T. Brown; Paul F. Cliften; Bijoy George; Leslie McIntosh; Savita Shrivastava; TuDung T. Nguyen; Jacqueline E. Payton; Mark A. Watson; Seth D. Crosby; Richard D. Head; Robi D. Mitra; Rakesh Nagarajan; Shashikant Kulkarni; Karen Seibert; Herbert W. Virgin

Currently, oncology testing includes molecular studies and cytogenetic analysis to detect genetic aberrations of clinical significance. Next-generation sequencing (NGS) allows rapid analysis of multiple genes for clinically actionable somatic variants. The WUCaMP assay uses targeted capture for NGS analysis of 25 cancer-associated genes to detect mutations at actionable loci. We present clinical validation of the assay and a detailed framework for design and validation of similar clinical assays. Deep sequencing of 78 tumor specimens (≥ 1000× average unique coverage across the capture region) achieved high sensitivity for detecting somatic variants at low allele fraction (AF). Validation revealed sensitivities and specificities of 100% for detection of single-nucleotide variants (SNVs) within coding regions, compared with SNP array sequence data (95% CI = 83.4-100.0 for sensitivity and 94.2-100.0 for specificity) or whole-genome sequencing (95% CI = 89.1-100.0 for sensitivity and 99.9-100.0 for specificity) of HapMap samples. Sensitivity for detecting variants at an observed 10% AF was 100% (95% CI = 93.2-100.0) in HapMap mixes. Analysis of 15 masked specimens harboring clinically reported variants yielded concordant calls for 13/13 variants at AF of ≥ 15%. The WUCaMP assay is a robust and sensitive method to detect somatic variants of clinical significance in molecular oncology laboratories, with reduced time and cost of genetic analysis allowing for strategic patient management.


JAMA | 2015

Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia

Jeffery M. Klco; Christopher A. Miller; Malachi Griffith; Allegra A. Petti; David H. Spencer; Shamika Ketkar-Kulkarni; Lukas D. Wartman; Matthew J. Christopher; Tamara Lamprecht; Nicole M. Helton; Eric J. Duncavage; Jacqueline E. Payton; Jack Baty; Sharon Heath; Obi L. Griffith; Dong Shen; Jasreet Hundal; Gue Su Chang; Robert S. Fulton; Michelle O'Laughlin; Catrina C. Fronick; Vincent Magrini; Ryan Demeter; David E. Larson; Shashikant Kulkarni; Bradley A. Ozenberger; John S. Welch; Matthew J. Walter; Timothy A. Graubert; Peter Westervelt

IMPORTANCE Tests that predict outcomes for patients with acute myeloid leukemia (AML) are imprecise, especially for those with intermediate risk AML. OBJECTIVES To determine whether genomic approaches can provide novel prognostic information for adult patients with de novo AML. DESIGN, SETTING, AND PARTICIPANTS Whole-genome or exome sequencing was performed on samples obtained at disease presentation from 71 patients with AML (mean age, 50.8 years) treated with standard induction chemotherapy at a single site starting in March 2002, with follow-up through January 2015. In addition, deep digital sequencing was performed on paired diagnosis and remission samples from 50 patients (including 32 with intermediate-risk AML), approximately 30 days after successful induction therapy. Twenty-five of the 50 were from the cohort of 71 patients, and 25 were new, additional cases. EXPOSURES Whole-genome or exome sequencing and targeted deep sequencing. Risk of identification based on genetic data. MAIN OUTCOMES AND MEASURES Mutation patterns (including clearance of leukemia-associated variants after chemotherapy) and their association with event-free survival and overall survival. RESULTS Analysis of comprehensive genomic data from the 71 patients did not improve outcome assessment over current standard-of-care metrics. In an analysis of 50 patients with both presentation and documented remission samples, 24 (48%) had persistent leukemia-associated mutations in at least 5% of bone marrow cells at remission. The 24 with persistent mutations had significantly reduced event-free and overall survival vs the 26 who cleared all mutations. Patients with intermediate cytogenetic risk profiles had similar findings. [table: see text]. CONCLUSIONS AND RELEVANCE The detection of persistent leukemia-associated mutations in at least 5% of bone marrow cells in day 30 remission samples was associated with a significantly increased risk of relapse, and reduced overall survival. These data suggest that this genomic approach may improve risk stratification for patients with AML.


Journal of Bacteriology | 2002

Genetic Variation at the O-Antigen Biosynthetic Locus in Pseudomonas aeruginosa

Christopher K. Raymond; Elizabeth H. Sims; Arnold Kas; David H. Spencer; Tanya Kutyavin; Richard G. Ivey; Yang Zhou; Rajinder Kaul; James B. Clendenning; Maynard V. Olson

The outer carbohydrate layer, or O antigen, of Pseudomonas aeruginosa varies markedly in different isolates of these bacteria, and at least 20 distinct O-antigen serotypes have been described. Previous studies have indicated that the major enzymes responsible for O-antigen synthesis are encoded in a cluster of genes that occupy a common genetic locus. We used targeted yeast recombinational cloning to isolate this locus from the 20 internationally recognized serotype strains. DNA sequencing of these isolated segments revealed that at least 11 highly divergent gene clusters occupy this region. Homology searches of the encoded protein products indicated that these gene clusters are likely to direct O-antigen biosynthesis. The O15 serotype strains lack functional gene clusters in the region analyzed, suggesting that O-antigen biosynthesis genes for this serotype are harbored in a different portion of the genome. The overall pattern underscores the plasticity of the P. aeruginosa genome, in which a specific site in a well-conserved genomic region can be occupied by any of numerous islands of functionally related DNA with diverse sequences.


The Journal of Molecular Diagnostics | 2013

Comparison of Clinical Targeted Next-Generation Sequence Data from Formalin-Fixed and Fresh-Frozen Tissue Specimens

David H. Spencer; Jennifer K. Sehn; Hailey J. Abel; Mark A. Watson; John D. Pfeifer; Eric J. Duncavage

Next-generation sequencing (NGS) has emerged as a powerful technique for the detection of genetic variants in the clinical laboratory. NGS can be performed using DNA from FFPE tissue, but it is unknown whether such specimens are truly equivalent to unfixed tissue for NGS applications. To address this question, we performed hybridization-capture enrichment and multiplexed Illumina NGS for 27 cancer-related genes using DNA from 16 paired fresh-frozen and routine FFPE lung adenocarcinoma specimens and conducted extensive comparisons between the sequence data from each sample type. This analysis revealed small but detectable differences between FFPE and frozen samples. Compared with frozen samples, NGS data from FFPE samples had smaller library insert sizes, greater coverage variability, and an increase in C to T transitions that was most pronounced at CpG dinucleotides, suggesting interplay between DNA methylation and formalin-induced changes; however, the error rate, library complexity, enrichment performance, and coverage statistics were not significantly different. Comparison of base calls between paired samples demonstrated concordances of >99.99%, with 96.8% agreement in the single-nucleotide variants detected and >98% accuracy of NGS data when compared with genotypes from an orthogonal single-nucleotide polymorphism array platform. This study demonstrates that routine processing of FFPE samples has a detectable but negligible effect on NGS data and that these samples can be a reliable substrate for clinical NGS testing.


Blood | 2013

Genomic impact of transient low-dose decitabine treatment on primary AML cells.

Jeffery M. Klco; David H. Spencer; Tamara Lamprecht; Shawn M. Sarkaria; Todd Wylie; Vincent Magrini; Jasreet Hundal; Jason Walker; Nobish Varghese; Petra Erdmann-Gilmore; Cheryl F. Lichti; Matthew R. Meyer; R. Reid Townsend; Richard Wilson; Elaine R. Mardis; Timothy J. Ley

Acute myeloid leukemia (AML) is characterized by dysregulated gene expression and abnormal patterns of DNA methylation; the relationship between these events is unclear. Many AML patients are now being treated with hypomethylating agents, such as decitabine (DAC), although the mechanisms by which it induces remissions remain unknown. The goal of this study was to use a novel stromal coculture assay that can expand primary AML cells to identify the immediate changes induced by DAC with a dose (100nM) that decreases total 5-methylcytosine content and reactivates imprinted genes (without causing myeloid differentiation, which would confound downstream genomic analyses). Using array-based technologies, we found that DAC treatment caused global hypomethylation in all samples (with a preference for regions with higher levels of baseline methylation), yet there was limited correlation between changes in methylation and gene expression. Moreover, the patterns of methylation and gene expression across the samples were primarily determined by the intrinsic properties of the primary cells, rather than DAC treatment. Although DAC induces hypomethylation, we could not identify canonical target genes that are altered by DAC in primary AML cells, suggesting that the mechanism of action of DAC is more complex than previously recognized.

Collaboration


Dive into the David H. Spencer's collaboration.

Top Co-Authors

Avatar

Timothy J. Ley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Tamara Lamprecht

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert S. Fulton

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Eric J. Duncavage

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jeffery M. Klco

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Richard Wilson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Shashikant Kulkarni

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Vincent Magrini

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John D. Pfeifer

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge