David H. Staelin
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David H. Staelin.
IEEE Transactions on Geoscience and Remote Sensing | 2003
Hartmut H. Aumann; Moustafa T. Chahine; Catherine Gautier; Mitchell D. Goldberg; Eugenia Kalnay; Larry M. McMillin; Henry E. Revercomb; Philip W. Rosenkranz; William L. Smith; David H. Staelin; L. Larrabee Strow; Joel Susskind
The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), and the Humidity Sounder for Brazil (HSB) form an integrated cross-track scanning temperature and humidity sounding system on the Aqua satellite of the Earth Observing System (EOS). AIRS is an infrared spectrometer/radiometer that covers the 3.7-15.4-/spl mu/m spectral range with 2378 spectral channels. AMSU is a 15-channel microwave radiometer operating between 23 and 89 GHz. HSB is a four-channel microwave radiometer that makes measurements between 150 and 190 GHz. In addition to supporting the National Aeronautics and Space Administrations interest in process study and climate research, AIRS is the first hyperspectral infrared radiometer designed to support the operational requirements for medium-range weather forecasting of the National Ocean and Atmospheric Administrations National Centers for Environmental Prediction (NCEP) and other numerical weather forecasting centers. AIRS, together with the AMSU and HSB microwave radiometers, will achieve global retrieval accuracy of better than 1 K in the lower troposphere under clear and partly cloudy conditions. This paper presents an overview of the science objectives, AIRS/AMSU/HSB data products, retrieval algorithms, and the ground-data processing concepts. The EOS Aqua was launched on May 4, 2002 from Vandenberg AFB, CA, into a 705-km-high, sun-synchronous orbit. Based on the excellent radiometric and spectral performance demonstrated by AIRS during prelaunch testing, which has by now been verified during on-orbit testing, we expect the assimilation of AIRS data into the numerical weather forecast to result in significant forecast range and reliability improvements.
Bulletin of the American Meteorological Society | 2006
Moustafa T. Chahine; Thomas S. Pagano; Hartmut H. Aumann; Robert Atlas; Christopher D. Barnet; John Blaisdell; Luke Chen; Murty Divakarla; Eric J. Fetzer; Mitch Goldberg; Catherine Gautier; Stephanie Granger; Scott E. Hannon; F. W. Irion; Ramesh Kakar; Eugenia Kalnay; Bjorn Lambrigtsen; Sung-Yung Lee; John Le Marshall; W. Wallace McMillan; Larry M. McMillin; Edward T. Olsen; Henry E. Revercomb; Philip W. Rosenkranz; William L. Smith; David H. Staelin; L. Larrabee Strow; Joel Susskind; David C. Tobin; Walter Wolf
Abstract The Atmospheric Infrared Sounder (AIRS) and its two companion microwave sounders, AMSU and HSB were launched into polar orbit onboard the NASA Aqua Satellite in May 2002. NASA required the sounding system to provide high-quality research data for climate studies and to meet NOAAs requirements for improving operational weather forecasting. The NOAA requirement translated into global retrieval of temperature and humidity profiles with accuracies approaching those of radiosondes. AIRS also provides new measurements of several greenhouse gases, such as CO2, CO, CH4, O3, SO2, and aerosols. The assimilation of AIRS data into operational weather forecasting has already demonstrated significant improvements in global forecast skill. At NOAA/NCEP, the improvement in the forecast skill achieved at 6 days is equivalent to gaining an extension of forecast capability of six hours. This improvement is quite significant when compared to other forecast improvements over the last decade. In addition to NCEP, ECM...
Journal of Applied Meteorology | 1976
David H. Staelin; K. F. Kunzi; R. L. Pettyjohn; R. K. L. Poon; R. W. Wilcox; J. W. Waters
Abstract The passive microwave spectrometer on the Nimbus 5 satellite has two channels that measure atmospheric water vapor and liquid water abundances over ocean. Observed water vapor abundances range up to 6 g cm−2 and differ from nearby radiosondes by ∼0.4 g cm−2. Average liquid water abundances over a 300 km observation zone range from −0.01 to 0.2 g cm−2, and have an rms error estimated to be ∼0.01 g cm−2 for most circumstances. These quantitative measurements can be used to construct global maps or to accumulate global statistics.
IEEE Transactions on Geoscience and Remote Sensing | 2003
Frederick W. Chen; David H. Staelin
Precipitation rates (mm per hour) with 15- and 50-km horizontal resolution are among the initial products of Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit/Humidity Sounder for Brazil (AIRS/AMSU/HSB). They will help identify the meteorological state of the atmosphere and any AIRS soundings potentially contaminated by precipitation. These retrieval methods can also be applied to the AMSU 23-191-GHz data from operational weather satellites such as NOAA-15, -16, and -17. The global extension and calibration of these methods are subjects for future research. The precipitation-rate estimation method presented is based on the opaque-channel approach described by Staelin and Chen (2000), but it utilizes more channels (17) and training data and infers 54-GHz band radiance perturbations at 15-km resolution. The dynamic range now reaches 100 mm/h. The method utilizes neural networks trained using the National Weather Services Next Generation Weather Radar (NEXRAD) precipitation estimates for 38 coincident rainy orbits of NOAA-15 AMSU data obtained over the eastern United States and coastal waters during a full year. The rms discrepancies between AMSU and NEXRAD were evaluated for the following NEXRAD rain-rate categories: 32 mm/h. The rms discrepancies for the 3790 15-km pixels not used to train the estimator were 1.0, 2.0, 2.3, 2.7, 3.5, 6.9, 19.0, and 42.9 mm/h, respectively. The 50-km retrievals were computed by spatially filtering the 15-km retrievals. The rms discrepancies over the same categories for all 4709 50-km pixels flagged as potentially precipitating were 0.5, 0.9, 1.1, 1.8, 3.2, 6.6, 12.9, and 22.1 mm/h, respectively. Representative images of precipitation for tropical, mid-latitude, and snow conditions suggest the methods potential global applicability.
Science | 1989
James W. Warwick; David R. Evans; Gerard R. Peltzer; Robert G. Peltzer; Joseph H. Romig; Constance B. Sawyer; Anthony C. Riddle; Andrea E. Schweitzer; M. D. Desch; Michael L. Kaiser; W. M. Farrell; T. D. Carr; Imke de Pater; David H. Staelin; Samuel Gulkis; Robert L. Poynter; A. Boischot; Françoise Genova; Yolande Leblanc; Alain Lecacheux; B. M. Pedersen; P. Zarka
Detection of very intense short radio bursts from Neptune was possible as early as 30 days before closest approach and at least 22 days after closest approach. The bursts lay at frequencies in the range 100 to 1300 kilohertz, were narrowband and strongly polarized, and presumably originated in southern polar regions ofthe planet. Episodes of smooth emissions in the frequency range from 20 to 865 kilohertz were detected during an interval of at least 10 days around closest approach. The bursts and the smooth emissions can be described in terms of rotation in a period of 16.11 � 0.05 hours. The bursts came at regular intervals throughout the encounter, including episodes both before and after closest approach. The smooth emissions showed a half-cycle phase shift between the five episodes before and after closest approach. This experiment detected the foreshock of Neptunes magnetosphere and the impacts of dust at the times of ring-plane crossings and also near the time of closest approach. Finally, there is no evidence for Neptunian electrostatic discharges.
IEEE Transactions on Geoscience and Remote Sensing | 2000
David H. Staelin; Frederick W. Chen
Promising agreement over land and sea has been obtained between NEXRAD 3-GHz radar observations of precipitation rate and retrievals based on simultaneous passive observations at 50-191 GHz from the Advanced Microwave Sounding Unit (AMSU) on the NOAA-15 meteorological satellite. A neural network with three hidden nodes and one linear output node operated on 15 km resolution data at 183 ± 1 and 183 ± 7 GHz, plus the cosine of scan angle, to produce estimates that match well the morphology of NEXRAD hurricane and frontal precipitation data smoothed to 15-km resolution. A second neural network operated on the same three parameters used in the first network, but smoothed to 50-km resolution, plus spatially-filtered cold perturbations detected in three AMSU tropospheric temperature-sounding channels (channels 4-6), which also have 50-km resolution. Comparison with the same NEXRAD data smoothed to 50-km resolution yielded root mean square (rms) discrepancies for two frontal systems and two passes over Hurricane Georges of ∼1.1 mm/h, and ±1.4 dB for those precipitation events over 4 mm/h. Only 8.9% of the total AMSU-derived rainfall was in areas where AMSU saw more than 1- mm/h and NEXRAD saw less than 1-mm/h, and only 6.2% of the total NEXRAD-derived rainfall was in areas where NEXRAD saw more than 1-mm/h and AMSU saw less than 1-mm/h.
Proceedings of the IEEE | 1969
David H. Staelin
Passive remote sensing at microwave frequencies has applications which range from meteorology to oceanography and geology. The meteorological applications are the most fully developed and include measurements of the temperature profile of the atmosphere and of the atmospheric distribution of H 2 O and O 3 . Such measurements can he made from space or from the ground by utilizing the microwave resonances of O 2 , H 2 O, and O 3 which occur near 1-cm wavelength. Although infrared observations permit similar meteorological measurements, such optical devices are much more sensitive to aerosols and clouds. The small but finite nonresonant attenuation of most moderate clouds at microwave frequencies also permits their liquid water content to be estimated. At wavelengths longer than 2 cm the microwave properties of the terrestrial surface dominate observations from space, and measurements as a function of polarization and viewing angle yield information about surface temperature and emissivity. Such measurements of the ocean should also permit the sea state to he inferred. The review has two major parts. The first part reviews the physics of the interactions, the mathematics of data interpretation, and the instrumentation currently available. The second part is applications-oriented and emphasizes the types, accuracy, and relevance of possible meteorological measurements.
IEEE Transactions on Geoscience and Remote Sensing | 2008
Chinnawat Surussavadee; David H. Staelin
This paper develops a global precipitation rate retrieval algorithm for the advanced microwave sounding unit (AMSU), which observes 23-191 GHz. The algorithm was trained using a numerical weather prediction (NWP) model (MM5) for 106 globally distributed storms that predicted brightness temperatures consistent with those observed simultaneously by AMSU. Neural networks were trained to retrieve hydrometeor water-paths, peak vertical wind, and 15-min average surface precipitation rates for rain and snow at 15-km resolution at all viewing angles. Different estimators were trained for land and sea, where surfaces classed as snow or ice were generally excluded from this paper. Surface-sensitive channels were incorporated by using linear combinations [principal components (PCs)] of their brightness temperatures that were observed to be relatively insensitive to the surface, as determined by visual examination of global images of each brightness temperature spectrum PC. This paper also demonstrates that multiple scattering in high microwave albedo clouds may help explain the observed consistency for a global set of 122 storms between AMSU-observed 50-191-GHz brightness temperature distributions and corresponding distributions predicted using a cloud-resolving mesoscale NWP model (MM5) and a two-stream radiative transfer model that models icy hydrometeors as spheres with frequency-dependent densities. The AMSU/MM5 retrieval algorithm developed in Part I of this paper is evaluated in Part II on a separate paper.
Journal of the Atmospheric Sciences | 1975
J. W. Waters; K. F. Kunzi; R. L. Pettyjohn; R. K. L. Poon; David H. Staelin
Abstract This article discusses remote sensing of atmospheric temperatures with the NEMS microwave spectrometer on the Nimbus 5 satellite, and the accuracy with which atmospheric temperatures can be determined by NEMS. The sensitivity of the NEMS instrument allows measurement of temperature profiles having vertical resolution of the respective NEMS weighting functions (∼10 km) with an rms accuracy of a few tenths of a degree Kelvin for a 16 s integration time. The accuracy of NEMS in estimating atmospheric temperatures at the discrete levels (∼2 km vertical resolution in the lower troposphere) used in the operational numerical model of the National Meteorological Center (NMC) is ∼2 K rms, as determined by comparing NEMS results with ground truth data obtained from the NMC operational analysis and from coincident radiosondes. These accuracies are consistent with the theoretical accuracies expected for NEMS.
IEEE Transactions on Geoscience and Remote Sensing | 2006
Chinnawat Surussavadee; David H. Staelin
This paper addresses the following: 1) millimeter-wave scattering by icy hydrometeors and 2) the consistency between histograms of millimeter-wave atmospheric radiances observed by satellite instruments [Advanced Microwave Sounding Unit-A/B (AMSU-A/B)] and those predicted by a mesoscale numerical weather prediction (NWP) model (MM5) in combination with a two-stream radiative transfer model (TBSCAT). This observed consistency at 15-km resolution supports use of MM5/TBSCAT as a useful simulation tool for designing and assessing global millimeter-wave systems for remote sensing of precipitation and related parameters at 50-200 GHz. MM5 was initialized by National Center for Environmental Prediction NWP analyses on a 1deg grid approximately 5 h prior to each AMSU transit and employed the Goddard explicit cloud physics model. The scattering behavior of icy hydrometeors, including snow and graupel, was assumed to be that of spheres having an ice density F(lambda) and the same average Mie scattering cross sections as computed using a discrete-dipole approximation implemented by DDSCAT for hexagonal plates and six-pointed rosettes, respectively, which have typical dimensional ratios observed aloft. No tuning beyond the stated assumptions was employed. The validity of these approximations was tested by varying F(lambda) for snow and graupel so as to minimize discrepancies between AMSU and MM5/TBSCAT radiance histograms over 122 global storms. Differences between these two independent determinations of F(lambda) were less than ~0.1 for both snow and graupel. Histograms of radiances for AMSU and MM5/TBSCAT generally agree for 122 global storms and for subsets of convective, stratiform, snowy, and nonglaciated precipitation