Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David H. Vandorpe is active.

Publication


Featured researches published by David H. Vandorpe.


Journal of Biological Chemistry | 1998

cDNA Cloning and Functional Characterization of the Mouse Ca2+-gated K+ Channel, mIK1 ROLES IN REGULATORY VOLUME DECREASE AND ERYTHROID DIFFERENTIATION

David H. Vandorpe; Boris E. Shmukler; Lianwei Jiang; Bing Lim; James Maylie; John P. Adelman; Lucia De Franceschi; M. Domenica Cappellini; Carlo Brugnara; Seth L. Alper

We have cloned from murine erythroleukemia (MEL) cells, thymus, and stomach the cDNA encoding the Ca2+-gated K+ (KCa) channel, mIK1, the mouse homolog of hIK1 (Ishii, T. M., Silvia, C., Hirschberg, B., Bond, C. T., Adelman, J. P., and Maylie, J. (1997) Proc. Natl. Acad. Sci.(U. S. A. 94, 11651–11656). mIK1 mRNA was detected at varied levels in many tissue types. mIK1 KCa channel activity expressed inXenopus oocytes closely resembled the Kca of red cells (Gardos channel) and MEL cells in its single channel conductance, lack of voltage-sensitivity of activation, inward rectification, and Ca2+ concentration dependence. mIK1 also resembled the erythroid channel in its pharmacological properties, mediating whole cell and unitary currents sensitive to low nm concentrations of both clotrimazole (CLT) and its des-imidazolyl metabolite, 2-chlorophenyl-bisphenyl-methanol, and to low nm concentrations of iodocharybdotoxin. Whereas control oocytes subjected to hypotonic swelling remained swollen, mIK1 expression conferred on oocytes a novel, Ca2+-dependent, CLT-sensitive regulatory volume decrease response. Hypotonic swelling of voltage-clamped mIK1-expressing oocytes increased outward currents that were Ca2+-dependent, CLT-sensitive, and reversed near the K+ equilibrium potential. mIK1 mRNA levels in ES cells increased steadily during erythroid differentiation in culture, in contrast to other KCa mRNAs examined. Low nanomolar concentrations of CLT inhibited proliferation and erythroid differentiation of peripheral blood stem cells in liquid culture.


Blood | 2013

Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1

Immacolata Andolfo; Seth L. Alper; Lucia De Franceschi; Carla Auriemma; Roberta Russo; Luigia De Falco; Fara Vallefuoco; Maria Rosaria Esposito; David H. Vandorpe; Boris E. Shmukler; Rupa Narayan; Donatella Montanaro; Maria D'Armiento; Annalisa Vetro; Ivan Limongelli; Orsetta Zuffardi; Bertil Glader; Stanley L. Schrier; Carlo Brugnara; Gordon W. Stewart; Jean Delaunay; Achille Iolascon

Autosomal dominant dehydrated hereditary stomatocytosis (DHSt) usually presents as a compensated hemolytic anemia with macrocytosis and abnormally shaped red blood cells (RBCs). DHSt is part of a pleiotropic syndrome that may also exhibit pseudohyperkalemia and perinatal edema. We identified PIEZO1 as the disease gene for pleiotropic DHSt in a large kindred by exome sequencing analysis within the previously mapped 16q23-q24 interval. In 26 affected individuals among 7 multigenerational DHSt families with the pleiotropic syndrome, 11 heterozygous PIEZO1 missense mutations cosegregated with disease. PIEZO1 is expressed in the plasma membranes of RBCs and its messenger RNA, and protein levels increase during in vitro erythroid differentiation of CD34(+) cells. PIEZO1 is also expressed in liver and bone marrow during human and mouse development. We suggest for the first time a correlation between a PIEZO1 mutation and perinatal edema. DHSt patient red cells with the R2456H mutation exhibit increased ion-channel activity. Functional studies of PIEZO1 mutant R2488Q expressed in Xenopus oocytes demonstrated changes in ion-channel activity consistent with the altered cation content of DHSt patient red cells. Our findings provide direct evidence that R2456H and R2488Q mutations in PIEZO1 alter mechanosensitive channel regulation, leading to increased cation transport in erythroid cells.


The Journal of Physiology | 2008

Species differences in Cl− affinity and in electrogenicity of SLC26A6-mediated oxalate/Cl− exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis

Jeffrey S. Clark; David H. Vandorpe; Marina N. Chernova; John F. Heneghan; Andrew K. Stewart; Seth L. Alper

The mouse is refractory to lithogenic agents active in rats and humans, and so has been traditionally considered a poor experimental model for nephrolithiasis. However, recent studies have identified slc26a6 as an oxalate nephrolithiasis gene in the mouse. Here we extend our earlier demonstration of different anion selectivities of the orthologous mouse and human SLC26A6 polypeptides to investigate the correlation between species‐specific differences in SLC26A6 oxalate/anion exchange properties as expressed in Xenopus oocytes and in reported nephrolithiasis susceptibility. We find that human SLC26A6 mediates minimal rates of Cl− exchange for Cl−, sulphate or formate, but rates of oxalate/Cl− exchange roughly equivalent to those of mouse slc2a6. Both transporters exhibit highly cooperative dependence of oxalate efflux rate on extracellular [Cl−], but whereas the K1/2 for extracellular [Cl−] is only 8 mm for mouse slc26a6, that for human SLC26A6 is 62 mm. This latter value approximates the reported mean luminal [Cl−] of postprandial human jejunal chyme, and reflects contributions from both transmembrane and C‐terminal cytoplasmic domains of human SLC26A6. Human SLC26A6 variant V185M exhibits altered [Cl−] dependence and reduced rates of oxalate/Cl− exchange. Whereas mouse slc26a6 mediates bidirectional electrogenic oxalate/Cl− exchange, human SLC26A6‐mediated oxalate transport appears to be electroneutral. We hypothesize that the low extracellular Cl− affinity and apparent electroneutrality of oxalate efflux characterizing human SLC26A6 may partially explain the high human susceptibility to nephrolithiasis relative to that of mouse. SLC26A6 sequence variant(s) are candidate risk modifiers for nephrolithiasis.


Biophysical Journal | 1994

FMRFamide and membrane stretch as activators of the Aplysia S-channel

David H. Vandorpe; D.L. Small; André Robert Dabrowski; Catherine E. Morris

The long-standing distinction between channels and transporters is becoming blurred, with one pump protein even able to convert reversibly to a channel in response to osmotic shock. In this light, it is plausible that stretch channels, membrane proteins whose physiological roles have been elusive, may be transporters exhibiting channel-like properties in response to mechanical stress. We recently described a case, however, where this seems an unlikely explanation. An Aplysia K channel whose physiological pedigree is well established (it is an excitability-modulating conductance mechanism) was found able to be activated by stretch. Here we establish more firmly the identity of this Aplysia conductance, the S-channel, as a stretch channel. We show that the permeation and fast kinetic properties of the stretch-activated channel and of the FMRFamide-activated S-channel are indistinguishable. We have also made progress in extending the kinetic analysis of the stretch channel to situations of multiple channel activity. This analysis implements a novel renewal theory approach and is therefore explained in some detail.


The Journal of Membrane Biology | 1997

The Antifungal Imidazole Clotrimazole and its Major In Vivo Metabolite are Potent Blockers of the Calcium-Activated Potassium Channel in Murine Erythroleukemia Cells

Ann R. Rittenhouse; David H. Vandorpe; Carlo Brugnara; Seth L. Alper

Abstract. Clotrimazole (CLT), a member of the antifungal imidazole family of compounds, has been found to inhibit both calcium (Ca2+)-activated 86Rb and potassium (K) fluxes of human red cells and to inhibit red cell binding of 125I-charybdotoxin (ChTX) [11]. We have now used patch-clamp techniques to demonstrate reversible inhibition of whole cell KCa2+ currents in murine erythroleukemia (MEL) cells by submicromolar concentrations of CLT. Inhibition was equivalent whether currents were elicited by bath application of the Ca2+ ionophore A23187 or by dialyzing cells with a pipette solution containing micromolar concentrations of free Ca2+. The extent of inhibition of whole cell MEL KCa2+ currents was voltage-dependent, decreasing with increasing test potential. We also determined the single channel basis of the CLT inhibition in MEL cells by demonstrating the inhibition of a calcium-activated, ChTX-sensitive K channel by CLT in outside-out patches. The channel was also blocked by the des-imidazolyl metabolite of CLT, 2-chlorophenyl-bisphenyl-methanol (MET II) [15], thus demonstrating that the imidazole ring is not required for the inhibitory action of CLT. Single KCa2+ channels were also evident in inside-out patches of MEL cells. Block of K current by CLT was not unique to MEL cells. CLT also inhibited a component of the whole cell K current in PC12 cells. Channel specificity of block by CLT was determined by examining its effects on other types of voltage-sensitive currents. CLT block showed the following rank order of potency: K currents in PC12 cells > Ca2+ currents in PC12 cells ≫ Na currents in sympathetic neurons. These results demonstrate that direct inhibition of single KCa2+ by CLT can be dissociated from inhibition of cytochrome P-450 in MEL cells.


PLOS ONE | 2010

Hypoxia Activates a Ca2+-Permeable Cation Conductance Sensitive to Carbon Monoxide and to GsMTx-4 in Human and Mouse Sickle Erythrocytes

David H. Vandorpe; Chang Xu; Boris E. Shmukler; Leo E. Otterbein; Marie Trudel; Frederick Sachs; Philip A. Gottlieb; Carlo Brugnara; Seth L. Alper

Background Deoxygenation of sickle erythrocytes activates a cation permeability of unknown molecular identity (Psickle), leading to elevated intracellular [Ca2+] ([Ca2+]i) and subsequent activation of KCa 3.1. The resulting erythrocyte volume decrease elevates intracellular hemoglobin S (HbSS) concentration, accelerates deoxygenation-induced HbSS polymerization, and increases the likelihood of cell sickling. Deoxygenation-induced currents sharing some properties of Psickle have been recorded from sickle erythrocytes in whole cell configuration. Methodology/Principal Findings We now show by cell-attached and nystatin-permeabilized patch clamp recording from sickle erythrocytes of mouse and human that deoxygenation reversibly activates a Ca2+- and cation-permeable conductance sensitive to inhibition by Grammastola spatulata mechanotoxin-4 (GsMTx-4; 1 µM), dipyridamole (100 µM), DIDS (100 µM), and carbon monoxide (25 ppm pretreatment). Deoxygenation also elevates sickle erythrocyte [Ca2+]i, in a manner similarly inhibited by GsMTx-4 and by carbon monoxide. Normal human and mouse erythrocytes do not exhibit these responses to deoxygenation. Deoxygenation-induced elevation of [Ca2+]i in mouse sickle erythrocytes did not require KCa3.1 activity. Conclusions/Significance The electrophysiological and fluorimetric data provide compelling evidence in sickle erythrocytes of mouse and human for a deoxygenation-induced, reversible, Ca2+-permeable cation conductance blocked by inhibition of HbSS polymerization and by an inhibitor of strctch-activated cation channels. This cation permeability pathway is likely an important source of intracellular Ca2+ for pathologic activation of KCa3.1 in sickle erythrocytes. Blockade of this pathway represents a novel therapeutic approach for treatment of sickle disease.


The Journal of Membrane Biology | 1992

Stretch activation of the Aplysia S-channel

David H. Vandorpe; Catherine E. Morris

SummaryThe S-channel, a receptor-mediated K+ channel of Aplysia sensory neurons which functions in neuromodulation, bears a strong resemblance to the ubiquitous stretch-activated channels of snail neurons. Snail neuron stretch channels are stretch sensitive only in the patch, not at the macroscopic level, a situation which leaves open the question of their physiological role. If S-channels resemble snail stretch channels because both belong to the same general class of channels, the S-channel, too, should display stretch sensitivity in the patch. We show, using single-channel recording, that the S-channel can be activated by stretch. Furthermore, we show that Aplysia neurons in general have stretch-activated K+ channels. We suggest that the stretch-sensitive K+ channels of molluscan neurons and other preparations (e.g., Drosophila muscle, snail heart) are S-like channels, i.e., receptor-mediated channels which adventitiously exhibit mechanosensitivity in the patch.


Journal of Clinical Investigation | 1988

Secretion of bicarbonate by rat distal tubules in vivo. Modulation by overnight fasting.

David Z. Levine; M Iacovitti; L Nash; David H. Vandorpe

We have performed microperfusion studies on distal tubule bicarbonate reabsorption (JtCO2) of fed and fasted rats to extend our previous observations of in vivo bicarbonate secretion and to resolve certain discrepancies between free-flow and microperfusion data. When rats are fasted overnight, as in previous free-flow studies, distal tubule microperfusion with a 28-mM tCO2 solution results in significant JtCO2 (53 +/- 6 pmol.min-1.mm-1) at normal flow and increases briskly (91 +/- 16 pmol.min-1.mm-1) with bicarbonate load. This response is not influenced by the addition of other normal tubular fluid constituents. However, when normally fed rats are used, as in our previous microperfusion studies, distal tubule JtCO2 is not different from zero when a 28-mM tCO2 solution is perfused at normal flow rates but becomes negative (-54 +/- 13 pmol.min-1.mm-1) at high flow rates, which indicates the existence of bicarbonate secretion against a concentration gradient. Alkali loading of fasted rats also elicits bicarbonate secretion at high flow. These results demonstrate for the first time that normal feeding or alkali loading can induce bicarbonate secretion in a mammalian nephron segment in vivo, and resolves previous discrepancies between free-flow and microperfusion data.


American Journal of Physiology-cell Physiology | 2011

SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization.

Andrew K. Stewart; Boris E. Shmukler; David H. Vandorpe; Fabian R. Reimold; John F. Heneghan; Miyuki Nakakuki; Arash Akhavein; Shigeru Ko; Hiroshi Ishiguro; Seth L. Alper

The secretin-stimulated human pancreatic duct secretes HCO(3)(-)-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO(3)(-) secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl(-)/HCO(3)(-) exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ∼140 mM HCO(3)(-) or more, mouse and rat ducts secrete ∼40-70 mM HCO(3)(-). Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO(3)(-) secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl(-)/Cl(-) exchange and electroneutral Cl(-)/HCO(3)(-) exchange. gpSlc26a6 in Xenopus oocytes mediated Cl(-)/Cl(-) exchange and bidirectional exchange of Cl(-) for oxalate and sulfate, but Cl(-)/HCO(3)(-) exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl(-), oxalate, and sulfate transport but no detectable Cl(-)/HCO(3)(-) exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of (36)Cl(-) influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO(3)(-) secretion in species that share a high HCO(3)(-) secretory output.


American Journal of Physiology-cell Physiology | 2010

Regulated transport of sulfate and oxalate by SLC26A2/DTDST.

John F. Heneghan; Arash Akhavein; Salas Mj; Boris E. Shmukler; Lawrence P. Karniski; David H. Vandorpe; Seth L. Alper

Nephrolithiasis in the Slc26a6(-/-) mouse is accompanied by 50-75% reduction in intestinal oxalate secretion with unchanged intestinal oxalate absorption. The molecular identities of enterocyte pathways for oxalate absorption and for Slc26a6-independent oxalate secretion remain undefined. The reported intestinal expression of SO(4)(2-) transporter SLC26A2 prompted us to characterize transport of oxalate and other anions by human SLC26A2 and mouse Slc26a2 expressed in Xenopus oocytes. We found that hSLC26A2-mediated [(14)C]oxalate uptake (K(1/2) of 0.65 +/- 0.08 mM) was cis-inhibited by external SO(4)(2-) (K(1/2) of 3.1 mM). hSLC26A2-mediated bidirectional oxalate/SO(4)(2-) exchange exhibited extracellular SO(4)(2-) K(1/2) of 1.58 +/- 0.44 mM for exchange with intracellular [(14)C]oxalate, and extracellular oxalate K(1/2) of 0.14 +/- 0.11 mM for exchange with intracellular (35)SO(4)(2-). Influx rates and K(1/2) values for mSlc26a2 were similar. hSLC26A2-mediated oxalate/Cl(-) exchange and bidirectional SO(4)(2-)/Cl(-) exchange were not detectably electrogenic. Both SLC26A2 orthologs exhibited nonsaturable extracellular Cl(-) dependence for efflux of intracellular [(14)C]oxalate, (35)SO(4)(2-), or (36)Cl(-). Rate constants for (36)Cl(-) efflux into extracellular Cl(-), SO(4)(2-), and oxalate were uniformly 10-fold lower than for oppositely directed exchange. Acidic extracellular pH (pH(o)) inhibited all modes of hSLC26A2-mediated anion exchange. In contrast, acidic intracellular pH (pH(i)) selectively activated exchange of extracellular Cl(-) for intracellular (35)SO(4)(2-) but not for intracellular (36)Cl(-) or [(14)C]oxalate. Protein kinase C inhibited hSLC26A2 by reducing its surface abundance. Diastrophic dysplasia mutants R279W and A386V of hSLC26A2 exhibited similar reductions in uptake of both (35)SO(4)(2-) and [(14)C]oxalate. A386V surface abundance was reduced, but R279W surface abundance was at wild-type levels.

Collaboration


Dive into the David H. Vandorpe's collaboration.

Top Co-Authors

Avatar

Seth L. Alper

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Boris E. Shmukler

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Carlo Brugnara

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrew K. Stewart

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

John F. Heneghan

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lianwei Jiang

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marina N. Chernova

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey S. Clark

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge