David Harrich
QIMR Berghofer Medical Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Harrich.
Biochemical Journal | 2012
Kylie M. Wagstaff; Haran Sivakumaran; Steven M. Heaton; David Harrich; David A. Jans
The movement of proteins between the cytoplasm and nucleus mediated by the importin superfamily of proteins is essential to many cellular processes, including differentiation and development, and is critical to disease states such as viral disease and oncogenesis. We recently developed a high-throughput screen to identify specific and general inhibitors of protein nuclear import, from which ivermectin was identified as a potential inhibitor of importin α/β-mediated transport. In the present study, we characterized in detail the nuclear transport inhibitory properties of ivermectin, demonstrating that it is a broad-spectrum inhibitor of importin α/β nuclear import, with no effect on a range of other nuclear import pathways, including that mediated by importin β1 alone. Importantly, we establish for the first time that ivermectin has potent antiviral activity towards both HIV-1 and dengue virus, both of which are strongly reliant on importin α/β nuclear import, with respect to the HIV-1 integrase and NS5 (non-structural protein 5) polymerase proteins respectively. Ivermectin would appear to be an invaluable tool for the study of protein nuclear import, as well as the basis for future development of antiviral agents.
Molecular and Cellular Biology | 2003
Grant A. Darnell; Toni M. Antalis; Ricky W. Johnstone; Brett W. Stringer; Steven M. Ogbourne; David Harrich; Andreas Suhrbier
ABSTRACT Plasminogen activator inhibitor-2 (PAI-2) is well documented as an inhibitor of the extracellular serine proteinase urokinase-type plasminogen activator (uPA) and is expressed in activated monocytes and macrophages, differentiating keratinocytes, and many tumors. Here we show that PAI-2 has a novel intracellular function as a retinoblastoma protein (Rb)-binding protein. PAI-2 colocalized with Rb in the nucleus and inhibited the turnover of Rb, which led to increases in Rb protein levels and Rb-mediated activities. Although PAI-2 contains an LXCXE motif, Rb binding was primarily mediated by the C-D interhelical region of PAI-2, which was found to bind to the C pocket of Rb. The C-D interhelical region of PAI-2 contained a novel Rb-binding motif, termed the PENF homology motif, which is shared by many cellular and viral Rb-binding proteins. PAI-2 expression also protected Rb from the accelerated degradation mediated by human papillomavirus (HPV) E7, leading to recovery of Rb and inhibition of E6/E7 mRNA expression. Protection of Rb by PAI-2 begins to explain many of the diverse, uPA-independent phenotypes conferred by PAI-2 expression. These results indicate that PAI-2 may enhance Rbs tumor suppressor activity and suggest a potential therapeutic role for PAI-2 against HPV-transformed lesions.
Journal of Virology | 2002
Itaru Anraku; Tracey J. Harvey; Richard Linedale; Joy Gardner; David Harrich; Andreas Suhrbier; Alexander A. Khromykh
ABSTRACT The ability of self-replicating RNA (replicon) vaccine vectors derived from the Australian flavivirus Kunjin (KUN) to induce protective αβ CD8+ T-cell responses was examined. KUN replicons encoding a model immunogen were delivered by three different vaccine modalities: (i) as naked RNA transcribed in vitro, (ii) as plasmid DNA constructed to allow in vivo transcription of replicon RNA by cellular RNA polymerase II (DNA based), and (iii) as replicon RNA encapsidated into virus-like particles. A single immunization with any of these KUN replicon vaccines induced CD8+ T-cell responses at levels comparable to those induced by recombinant vaccinia virus encoding the same immunogen. Immunization with only 0.1 μg of DNA-based KUN replicons elicited CD8+ T-cell responses similar to those seen after immunization with 100 μg of a conventional DNA vaccine. Naked RNA immunization with KUN replicons also protected mice against challenges with recombinant vaccinia virus and B16 tumor cells. These results demonstrate the value of KUN replicon vectors for inducing protective antiviral and anticancer CD8+ T-cell responses.
Journal of Virology | 2000
David Harrich; C. William Hooker; Emma Parry
ABSTRACT The human immunodeficiency virus type 1 (HIV-1) RNA genome is flanked by a repeated sequence (R) that is required for HIV-1 replication. The first 57 nucleotides of R form a stable stem-loop structure called the transactivation response element (TAR) that can interact with the virally encoded transcription activator protein, Tat, to promote high levels of gene expression. Recently, we demonstrated that TAR is also important for efficient HIV-1 reverse transcription, since HIV-1 mutated in the upper stem-loop of TAR showed a reduced ability both to initiate and to complete reverse transcription. We have analyzed a series of HIV-1 mutant viruses to better defined the structural or sequence elements required for natural endogenous reverse transcription and packaging of virion RNA. Our results indicate that the requirement for TAR in reverse transcription is conformation dependent, since mutants with mutations that alter the upper stem-loop orientation are defective for reverse transcription initiation and have minor defects in RNA packaging. In contrast, TAR mutations that allowed the formation of alternative upper stem-loop structure greatly reduced RNA packaging but did not affect reverse transcription efficiency. These results are consistent with direct involvement of the upper stem-loop structure in packaging of genomic RNA and suggest that the TAR RNA stem-loop from nucleotide +18 to +42 interacts with other components of the reverse transcription initiation complex to promote efficient reverse transcription.
Journal of Virology | 2003
Tracey J. Harvey; Itaru Anraku; Richard Linedale; David Harrich; Jason M. Mackenzie; Andreas Suhrbier; Alexander A. Khromykh
ABSTRACT We have previously demonstrated the ability of the vaccine vectors based on replicon RNA of the Australian flavivirus Kunjin (KUN) to induce protective antiviral and anticancer CD8+ T-cell responses using murine polyepitope as a model immunogen (I. Anraku, T. J. Harvey, R. Linedale, J. Gardner, D. Harrich, A. Suhrbier, and A. A. Khromykh, J. Virol. 76:3791-3799, 2002). Here we showed that immunization of BALB/c mice with KUN replicons encoding HIV-1 Gag antigen resulted in induction of both Gag-specific antibody and protective Gag-specific CD8+ T-cell responses. Two immunizations with KUNgag replicons in the form of virus-like particles (VLPs) induced anti-Gag antibodies with titers of ≥1:10,000. Immunization with KUNgag replicons delivered as plasmid DNA, naked RNA, or VLPs induced potent Gag-specific CD8+ T-cell responses, with one immunization of KUNgag VLPs inducing 4.5-fold-more CD8+ T cells than the number induced after immunization with recombinant vaccinia virus carrying the gag gene (rVVgag). Two immunizations with KUNgag VLPs also provided significant protection against challenge with rVVgag. Importantly, KUN replicon VLP vaccinations induced long-lasting immune responses with CD8+ T cells able to secrete gamma interferon and to mediate protection 6 to 10 months after immunization. These results illustrate the potential value of the KUN replicon vectors for human immunodeficiency virus vaccine design.
Reviews in Medical Virology | 2009
David Warrilow; Gilda Tachedjian; David Harrich
Upon HIV attachment, fusion and entry into the host cell cytoplasm, the viral core undergoes rearrangement to become the mature reverse transcription complex (RTC). Reduced infectivity of viral deletion mutants of the core proteins, capsid and negative factor (Nef), can be complemented by vesicular stomatitis virus (VSV) pseudotyping suggesting a role for these viral proteins in a common event immediately post‐entry. This event may be necessary for correct trafficking of the early complex. Enzymatic activation of the complex occurs either before or during RTC maturation, and may be dependent on the presence of deoxynucleotides in the host cell. The RTC initially becomes enlarged immediately after entry, which is followed by a decrease in its sedimentation rate consistent with core uncoating. Several HIV proteins associated with the RTC and recently identified host‐cell proteins are important for reverse transcription while genome‐wide siRNA knockdown studies have identified additional host cell factors that may be required for reverse transcription. Determining precisely how these proteins assist the RTC function needs to be addressed. Copyright
Journal of Virology | 2001
C. William Hooker; William B. Lott; David Harrich
ABSTRACT Early HIV-1 reverse transcription can be separated into initiation and elongation phases. Here we show, using PCR analysis of negative-strand strong-stop DNA [(−)ssDNA] synthesis in intact virus, that different reverse transcriptase (RT) inhibitors affect distinct phases of early natural endogenous reverse transcription (NERT). The effects of nevirapine on NERT were consistent with a mechanism of action including both specific and nonspecific binding events. The nonspecific component of this inhibition targeted the elongation reaction, whereas the specific effect seemed principally to be directed at very early events (initiation or the initiation-elongation switch). In contrast, foscarnet and the nucleoside analog ddATP inhibited both early and late (−)ssDNA synthesis in a similar manner. We also examined compounds that targeted other viral proteins and found that Ro24-7429 (a Tat antagonist) and rosmarinic acid (an integrase inhibitor) also directly inhibited RT. Our results indicate that NERT can be used to identify and evaluate compounds that directly target the reverse transcription complex.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Kylie Warren; Ting Wei; Dongsheng Li; Fangyun Qin; David Warrilow; Min-Hsuan Lin; Haran Sivakumaran; Ann Apolloni; Catherine M. Abbott; Alun Jones; Jennifer L Anderson; David Harrich
Cellular proteins have been implicated as important for HIV-1 reverse transcription, but whether any are reverse transcription complex (RTC) cofactors or affect reverse transcription indirectly is unclear. Here we used protein fractionation combined with an endogenous reverse transcription assay to identify cellular proteins that stimulated late steps of reverse transcription in vitro. We identified 25 cellular proteins in an active protein fraction, and here we show that the eEF1A and eEF1G subunits of eukaryotic elongation factor 1 (eEF1) are important components of the HIV-1 RTC. eEF1A and eEF1G were identified in fractionated human T-cell lysates as reverse transcription cofactors, as their removal ablated the ability of active protein fractions to stimulate late reverse transcription in vitro. We observed that the p51 subunit of reverse transcriptase and integrase, two subunits of the RTC, coimmunoprecipitated with eEF1A and eEF1G. Moreover eEF1A and eEF1G associated with purified RTCs and colocalized with reverse transcriptase following infection of cells. Reverse transcription in cells was sharply down-regulated when eEF1A or eEF1G levels were reduced by siRNA treatment as a result of reduced levels of RTCs in treated cells. The combined evidence indicates that these eEF1 subunits are critical RTC stability cofactors required for efficient completion of reverse transcription. The identification of eEF1 subunits as unique RTC components provides a basis for further investigations of reverse transcription and trafficking of the RTC to the nucleus.
Microbiology and Molecular Biology Reviews | 2013
Dongsheng Li; Ting Wei; Catherine M. Abbott; David Harrich
SUMMARY The prokaryotic translation elongation factors were identified as essential cofactors for RNA-dependent RNA polymerase activity of the bacteriophage Qβ more than 40 years ago. A growing body of evidence now shows that eukaryotic translation elongation factors (eEFs), predominantly eEF1A, acting in partially characterized complexes sometimes involving additional eEFs, facilitate virus replication. The functions of eEF1A as a protein chaperone and an RNA- and actin-binding protein enable its “moonlighting” roles as a virus replication cofactor. A diverse group of viruses, from human immunodeficiency type 1 and West Nile virus to tomato bushy stunt virus, have adapted to use eEFs as cofactors for viral transcription, translation, assembly, and pathogenesis. Here we review the mechanisms used by viral pathogens to usurp these abundant cellular proteins for their replication.
PLOS ONE | 2009
Luke Meredith; Haran Sivakumaran; Lee Major; Andreas Suhrbier; David Harrich
Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection.