Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Henley is active.

Publication


Featured researches published by David Henley.


Neuroscience | 2011

New insights into corticosteroid-binding globulin and glucocorticoid delivery

David Henley; Stafford L. Lightman

Corticosteroid-binding globulin (CBG) binds cortisol with high affinity and facilitates its transport in the blood. A recent discovery suggests that CBG may have a role beyond that of a simple transport carrier protein. CBG functions as a protein thermocouple that is exquisitely sensitive to temperature change, releasing cortisol in response to increasing temperatures within the human physiological range. It is also expressed in the human hypothalamus and cerebrospinal fluid, while in the rodent it is also found in other intracellular neuronal locations, suggesting a role in regulating access of glucocorticoids to their receptors in the CNS. Genetic variants of CBG have been detected in man and have been associated with fatigue-pain syndromes and hypotension, again suggesting a potential effect of CBG on the access of cortisol to brain glucocorticoid receptors. These new findings provide the basis for a novel concept of the mechanisms through which the body regulates access of glucocorticoids to the brain and other tissues of the body.


The Journal of Neuroscience | 2010

Rapid Glucocorticoid Receptor-Mediated Inhibition of Hypothalamic-Pituitary-Adrenal Ultradian Activity in Healthy Males

Georgina M Russell; David Henley; Ja Leendertz; Jennie A. Douthwaite; Susan A. Wood; Adam Stevens; Wolfram Woltersdorf; Bernard W.M.M. Peeters; Ge S. F. Ruigt; Anne White; Johannes D. Veldhuis; Stafford L. Lightman

A complex dynamic ultradian rhythm underlies the hypothalamic–pituitary–adrenal (HPA) circadian rhythm. We have investigated in normal human male subjects the importance, site of action, and receptor-mediated processes involved in rapid basal corticosteroid feedback and its interaction with corticotrophin releasing hormone (CRH) drive. Pro-opiomelanocortin (POMC), ACTH, and cortisol were measured every 10 min from healthy males during the awakening period or late afternoon using an automated blood sampling system. Mathematical modeling into discrete pulses of activity revealed that intravenous infusion of the synthetic mixed glucocorticoid/mineralocorticoid agonist prednisolone produced rapid inhibition of ACTH and cortisol pulsatility within 30 min in the morning and afternoon. Any pulse that had commenced at the time of injection was unaffected, and subsequent pulsatility was inhibited. Prednisolone also inhibited ACTH and cortisol secretion in response to exogenous CRH stimulation, inferring rapid feedback inhibition at the anterior pituitary. Circulating POMC peptide concentrations were unaffected, suggesting that the rapid corticosteroid inhibitory effect specifically targeted ACTH secretion from pituitary corticotrophs. Prednisolone fast feedback was only reduced by glucocorticoid receptor antagonist pretreatment and not by mineralocorticoid receptor antagonism, suggesting a glucocorticoid receptor-mediated pathway. The intravenous prednisolone suppression test provides a powerful new tool to investigate HPA abnormalities underlying metabolic and psychiatric disease states.


The Journal of Clinical Endocrinology and Metabolism | 2010

Temperature-Responsive Release of Cortisol from Its Binding Globulin: A Protein Thermocouple

Angus Cameron; David Henley; Robin W. Carrell; Aiwu Zhou; Anthony R. Clarke; Stafford L. Lightman

BACKGROUND Only 5% of circulating cortisol is active and unbound to carrier proteins. Because cortisol levels vary rapidly due to the pulsatile nature of cortisol secretion, the dynamics of cortisol binding are critical determinants of tissue levels of free cortisol and consequent hormonal signaling. The major glucocorticoid carrier protein is corticosteroid binding globulin (CBG), a member of the serpin family that undergoes conformational changes to bind and release hormones. This mechanism has been noted to be temperature responsive, and we have now investigated the effects of temperature on the binding of human CBG to both cortisol and progesterone. METHODS Recombinant human CBG was synthesized and used for binding studies with cortisol and progesterone between 34 and 43 C. Binding was monitored by recording the change in intrinsic protein fluorescence. Binding of the steroids to the other major carrier, serum albumin, was measured in a similar manner. RESULTS There was no effect of temperature on the interaction between human serum albumin and either cortisol or progesterone. The association of both cortisol and progesterone with CBG is more than three orders of magnitude greater than that with HSA, and this interaction was extremely responsive to changes in temperature. The affinity of both cortisol and progesterone for CBG drops approximately 16-fold as temperature increases from 35 to 42 C. CONCLUSIONS This study clearly shows that even within the clinically relevant range of temperatures found in humans, CBG acts as a protein thermocouple that is exquisitely sensitive to temperature change and will release cortisol in response to fever or external sources of heat. This has major implications for our understanding of cortisol regulation in febrile patients.


Journal of Medical Engineering & Technology | 2009

Development of an automated blood sampling system for use in humans

David Henley; Ja Leendertz; Georgina M Russell; Susan A. Wood; S Taheri; Ww Woltersdorf; Stafford L. Lightman

Many hormones are released in a pulsatile or burst-like pattern resulting in fluctuating blood levels that can undergo rapid modulation by physiological and pathological signals. To accurately measure these changes in hormone concentration requires frequent blood sampling, often over extended periods as the overall rhythmicity may vary over 24 hours. The aim of this study was to develop a computerized, automated blood sampling system which allows repeated stress-free blood sample collection from humans over an extended period under basal or test conditions. The system incorporates a peristaltic pump, fraction collector and standard infusion pump together with a custom built electronic control unit linked to a personal computer. Disposable tubing prevents cross-contamination between study participants. The computer programme is modifiable to adjust for the number of specimen tubes and volume of blood collected per sampling cycle. Patency of the collecting line is maintained with 0.9% saline, without the need for heparinization. To validate the system, 10-minute samples for cortisol were collected over 24 hours from five healthy volunteers, of whom two had additional concomitant ACTH sampling. Deconvolution analysis revealed an expected number of hormone secretory episodes and a non-pathological degree of orderliness within the data. There was high concordance between ACTH and cortisol secretory events. The ability of the system to allow multiple measurements and of the software program to link with other physiological monitoring equipment provides a powerful tool to study physiologic/pathophysiologic change in relation to blood hormone and other biomarker levels.


The Journal of Clinical Endocrinology and Metabolism | 2014

Continuous Subcutaneous Hydrocortisone Infusion Therapy in Addison's Disease: A Randomized, Placebo-Controlled Clinical Trial

Lucia Gagliardi; Marni A. Nenke; Tilenka R. J. Thynne; Jenny von der Borch; Wayne Rankin; David Henley; Jane Sorbello; Warrick J. Inder; David J. Torpy

CONTEXT Patients with Addisons disease (AD) report impaired subjective health status (SHS). Since cortisol exhibits a robust circadian cycle that entrains other biological clocks, impaired SHS may be due to the noncircadian cortisol profile achieved with conventional glucocorticoid replacement. Continuous subcutaneous hydrocortisone infusion (CSHI) reproduces a circadian cortisol profile, but its effects on SHS have not been objectively evaluated. OBJECTIVE The aim of this study was to determine the effect of CSHI on SHS in AD. SETTING AND DESIGN This was a multicentre, double-blind, placebo-controlled trial of CSHI vs oral glucocorticoid therapy. Participants received in random order 4 weeks of: CSHI and oral placebo, and subcutaneous placebo and oral hydrocortisone, separated by a 2-week washout period. SHS was assessed using the Short-Form 36 (SF-36), General Health Questionnaire (GHQ-28), Fatigue Scale (FS), Gastrointestinal Symptom Rating Scale (GSRS); and Addisons Quality of Life Questionnaire (AddiQoL). Participants were asked their (blinded) treatment preference. Twenty-four hour urine free cortisol (UFC) and diurnal salivary cortisol collections compared cortisol exposure during each treatment. RESULTS Ten participants completed the study. Baseline SHS scores (mean ± SE) were consistent with mild impairment: SF-36 physical component summary 48.4 (± 2.4), mental component summary 53.3 (± 3.0); GHQ-28 18.1 (± 3.3); GSRS 3.7 (± 1.6), and AddiQoL 94.7 (± 3.7). FS was similar to other AD cohorts 13.5 (± 1.0) (P = 0.82). UFC between treatments was not different (P = 0.87). The salivary cortisol at 0800 h was higher during CSHI (P = 0.03), but not at any other time points measured. There was no difference between the treatments in the SHS assessments. Five participants preferred CSHI, four oral hydrocortisone, and one was uncertain. CONCLUSIONS Biochemical measurements indicate similar cortisol exposure during each treatment period, although a more circadian pattern was evident during CSHI. CSHI does not improve SHS in AD with good baseline SHS. This casts some doubt on the potential benefit of circadian cortisol delivery on SHS in AD.


Critical Care Medicine | 2015

Dynamic pituitary-adrenal interactions in response to cardiac surgery.

Ben Gibbison; Francesca Spiga; Jamie J. Walker; Georgina M Russell; Kirsty Stevenson; Yvonne M. Kershaw; Zidong Zhao; David Henley; Gianni D. Angelini; Stafford L. Lightman

Objectives:To characterize the dynamics of the pituitary-adrenal interaction during the course of coronary artery bypass grafting both on and off pump. Since our data pointed to a major change in adrenal responsiveness to adrenocorticotropic hormone, we used a reverse translation approach to investigate the molecular mechanisms underlying this change in a rat model of critical illness. Design:Clinical studies: Prospective observational study. Animal studies: Controlled experimental study. Setting:Clinical studies: Cardiac surgery operating rooms and critical care units. Animal studies: University research laboratory. Subjects:Clinical studies: Twenty, male patients. Animal studies: Adult, male Sprague-Dawley rats. Interventions:Clinical studies: Coronary artery bypass graft—both on and off pump. Animal studies: Injection of either lipopolysaccharide or saline (controls) via a jugular vein cannula. Measurements and Main Results:Clinical studies: Blood samples were taken for 24 hours from placement of the first venous access. Cortisol and adrenocorticotropic hormone were measured every 10 and 60 minutes, respectively, and corticosteroid-binding globulin was measured at the beginning and end of the 24-hour period and at the end of operation. There was an initial rise in both levels of adrenocorticotropic hormone and cortisol to supranormal values at around the end of surgery. Adrenocorticotropic hormone levels then returned toward preoperative values. Ultradian pulsatility of both adrenocorticotropic hormone and cortisol was maintained throughout the perioperative period in all individuals. The sensitivity of the adrenal gland to adrenocorticotropic hormone increased markedly at around 8 hours after surgery maintaining very high levels of cortisol in the face of “basal” levels of adrenocorticotropic hormone. This sensitivity began to return toward preoperative values at the end of the 24-hour sampling period. Animal studies: Adult, male Sprague-Dawley rats were given either lipopolysaccharide or sterile saline via a jugular vein cannula. Hourly blood samples were subsequently collected for adrenocorticotropic hormone and corticosterone measurement. Rats were killed 6 hours after the injection, and the adrenal glands were collected for measurement of steroidogenic acute regulatory protein, steroidogenic factor 1, and dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 messenger RNAs and protein using real-time quantitative polymerase chain reaction and Western immunoblotting, respectively. Adrenal levels of the adrenocorticotropic hormone receptor (melanocortin type 2 receptor) messenger RNA and its accessory protein (melanocortin type 2 receptor accessory protein) were also measured by real-time quantitative polymerase chain reaction. In response to lipopolysaccharide, rats showed a pattern of adrenocorticotropic hormone and corticosterone that was similar to patients undergoing coronary artery bypass grafting. We were also able to demonstrate increased intra-adrenal corticosterone levels and an increase in steroidogenic acute regulatory protein, steroidogenic factor 1, and melanocortin type 2 receptor accessory protein messenger RNAs and steroidogenic acute regulatory protein, and a reduction in dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 and melanocortin type 2 receptor messenger RNAs, 6 hours after lipopolysaccharide injection. Conclusions:Severe inflammatory stimuli activate the hypothalamic-pituitary-adrenal axis resulting in increased steroidogenic activity in the adrenal cortex and an elevation of cortisol levels in the blood. Following coronary artery bypass grafting, there is a massive increase in both adrenocorticotropic hormone and cortisol secretion. Despite a subsequent fall of adrenocorticotropic hormone to basal levels, cortisol remains elevated and coordinated adrenocorticotropic hormone-cortisol pulsatility is maintained. This suggested that there is an increase in adrenal sensitivity to adrenocorticotropic hormone, which we confirmed in our animal model of immune activation of the hypothalamic-pituitary-adrenal axis. Using this model, we were able to show that this increased adrenal sensitivity results from changes in the regulation of both stimulatory and inhibitory intra-adrenal signaling pathways. Increased understanding of the dynamics of normal hypothalamic-pituitary-adrenal responses to major surgery will provide us with a more rational approach to glucocorticoid therapy in critically ill patients.


Chronobiology International | 2014

The effects of season, daylight saving and time of sunrise on serum cortisol in a large population

Narelle Hadlow; Suzanne J. Brown; Robert Wardrop; David Henley

Cortisol is critical for maintenance of health and homeostasis and factors affecting cortisol levels are of clinical importance. There is conflicting information about the effects of season on morning cortisol and little information on the effects of sunlight on population cortisol assessment. The aim of this study was to assess whether changes in median serum cortisol occurred in a population in conjunction with changing seasons, daylight saving time (DST) or time of sunrise. We analysed serum cortisol results (n = 27 569) from a single large laboratory over a 13-year period. Subjects with confounding medications or medical conditions were excluded and data analysed in 15-minute intervals. We assessed the influence of traditional seasons, seasons determined by equinox/solstice, DST and time of sunrise on median cortisol. The median time of cortisol collection did not vary significantly between seasons. Using traditional seasons, median cortisol was lowest in summer (386 nmol/L) and spring (384 nmol/L) with higher cortisol in autumn (406 nmol/L) and winter (414 nmol/L). Median cortisol was lowest in the summer solstice quarter with significant comparative increases in the spring equinox quarter (3.1%), the autumn equinox quarter (4.5%) and the winter solstice quarter (8.6%). When cortisol was modelled against time, with adjustment for actual sunrise time on day of collection, for each hour delay in sunrise there was a 4.8% increase in median cortisol (95% CI: 3.9–5.7%). In modelling to explain the variation in cortisol over the morning, sunrise time was better than season in explaining seasonal effects. A subtle cyclic pattern in median cortisol also occurred throughout the months of the year. A 3-year trial of DST allowed comparison of cortisol in DST and non DST periods, when clock time differed by one hour. There was modest evidence of a difference in acrophase between DST and non DST cortisol (p = 0.038), with DST peak cortisol estimated to occur 58 minutes later than non-DST peak. In summary, we found that time of sunrise and time of cortisol collection were the most important factors influencing median cortisol. For each hour later that the sun rose there was an almost 5% increase in median cortisol. There was significant seasonal variability with lowest cortisol noted in summer coinciding with the earliest sunrise time. This is an important finding which is consistent with the understanding that light is the major zeitgeber in entrainment of the human circadian cortisol rhythm. Our data suggest this rhythm is resistant to the arbitrary changes in clock time with daylight saving.


Journal of Endocrinology | 2009

Plasma apelin levels in obstructive sleep apnea and the effect of continuous positive airway pressure therapy

David Henley; Fiona Buchanan; Rosemary Gibson; Jennie A. Douthwaite; Susan A. Wood; Wolfram Woltersdorf; James R. Catterall; Stafford L. Lightman

Apelin is a peptide hormone with cardiovascular and glucose homeostasis properties, and obstructive sleep apnea (OSA) is complicated by cardiovascular and metabolic comorbidities. Plasma apelin has not been previously assessed in OSA. We investigated the response of plasma apelin to a 2-h 75 g oral glucose tolerance test (OGTT) and the effect of 3 months compliant continuous positive airway pressure (CPAP) therapy in 15 obese males with newly diagnosed OSA. Plasma apelin and serum cortisol were recorded 10 minutely, while serum insulin and glucose were measured 30 minutely. Ten subjects had plasma apelin measured at intervals across a 24-h period to investigate for circadian variation in apelin levels, and this was repeated following 3 months compliant CPAP therapy. Fasting (0.342+/-0.038 vs 0.288+/-0.024 ng/ml, P=0.04), 30 min (0.399+/-0.035 vs 0.312+/-0.036 ng/ml, P=0.007) and 120 min (0.402+/-0.030 vs 0.259+/-0.024 ng/ml, P<0.001) apelin levels were reduced following CPAP. The area under curve for apelin OGTT response was lower post-CPAP (44.1+/-3.3 vs 35.8+/-2.3 ng/ml per min, P<0.001). Mean OGTT apelin levels showed a significant treatment effect (P=0.006) and a time effect (P<0.001), and the effect of time was different pre- versus post-CPAP (P=0.005). No significant variability in apelin levels existed across the 24-h period at diagnosis. Lower levels were evident overnight following treatment (P=0.004). Improvements in insulin and glucose parameters and reduced cortisol levels were found post-CPAP. In summary, untreated OSA was associated with elevated plasma apelin levels, altered apelin secretory dynamics in response to oral glucose and lack of an apparent circadian variability, which was restored following CPAP.


Clinical Endocrinology | 2014

Cardio-metabolic consequences of glucocorticoid replacement: relevance of ultradian signalling.

David Henley; Stafford L. Lightman

Chronic exposure to elevated glucocorticoid levels is associated with obesity, insulin resistance, impaired glucose tolerance, hypertension and dyslipidaemia, manifest classically in Cushings syndrome and with high‐dose glucocorticoid therapy. However, cardiovascular events are also reportedly higher in patients with primary and secondary hypoadrenalism receiving ‘replacement’ glucocorticoid doses. This has been attributed to an inability to mimic accurately the diurnal rhythm of cortisol with current oral replacement therapy and subsequent glucocorticoid excess. Although development of delayed release oral preparations has sought to overcome this problem, there has been little attention on the ultradian rhythm of glucocorticoids and its relevance for replacement therapy and associated cardio‐metabolic comorbidity. Endogenous glucocorticoids are released in a pulsatile manner, and this ultradian rhythm is important in maintaining homeostatic control through glucocorticoid‐receptor (GR)‐dependent transcription regulation that rapidly responds to circulating hormone levels. Constant glucocorticoid exposure can result in continuous transcription, aberrant mRNA accumulation and abnormal protein levels. GR regulation of transcription programmes is highly cell and tissue specific, binding to distinct genomic loci in different cellular contexts. GR also interacts with a large cohort of DNA‐binding factors with cell‐specific interactions. The relevance of kinetic patterns of GR‐dependent gene expression in vivo is not yet fully elucidated. However, given that GR gene variants are associated with cardiovascular disease, it is possible that ultradian delivery of glucocorticoid replacement may become important, at least in selected patients.


Stress | 2016

Characterization and novel analyses of acute stress response patterns in a population-based cohort of young adults: Influence of gender, smoking, and BMI

Carly E. Herbison; David Henley; Julie A. Marsh; Helen C. Atkinson; John P. Newnham; Stephen G. Matthews; Stephen J. Lye; Craig E. Pennell

Abstract Dysregulation of the biological stress response system has been implicated in the development of psychological, metabolic, and cardiovascular disease. Whilst changes in stress response are often quantified as an increase or decrease in cortisol levels, three different patterns of stress response have been reported in the literature for the Trier Social Stress Test (TSST) (reactive-responders (RR), anticipatory-responders (AR) and non-responders (NR)). However, these have never been systematically analyzed in a large population-based cohort. The aims of this study were to examine factors that contribute to TSST variation (gender, oral contraceptive use, menstrual cycle phase, smoking, and BMI) using traditional methods and novel analyses of stress response patterns. We analyzed the acute stress response of 798, 18-year-old participants from a community-based cohort using the TSST. Plasma adrenocorticotrophic hormone, plasma cortisol, and salivary cortisol levels were quantified. RR, AR, and NR patterns comprised 56.6%, 26.2%, and 17.2% of the cohort, respectively. Smokers were more likely to be NR than (RR or AR; adjusted, p < 0.05). Overweight and obese subjects were less likely to be NR than the other patterns (adjusted, p < 0.05). Males were more likely to be RR than NR (adjusted, p = 0.05). In addition, we present a novel AUC measure (AUCR), for use when the TSST baseline concentration is higher than later time points. These results show that in a young adult cohort, stress-response patterns, in addition to other parameters vary with gender, smoking, and BMI. The distribution of these patterns has the potential to vary with adult health and disease and may represent a biomarker for future investigation.

Collaboration


Dive into the David Henley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig E. Pennell

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Suzanne J. Brown

Sir Charles Gairdner Hospital

View shared research outputs
Top Co-Authors

Avatar

Carly E. Herbison

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Narelle Hadlow

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. Lye

Lunenfeld-Tanenbaum Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Walsh

Sir Charles Gairdner Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge