Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Hillerkuss is active.

Publication


Featured researches published by David Hillerkuss.


IEEE Photonics Technology Letters | 2012

Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats

Rene Schmogrow; Bernd Nebendahl; Marcus Winter; Arne Josten; David Hillerkuss; Swen Koenig; Joachim Meyer; M. Dreschmann; Michael Huebner; Christian Koos; Juergen Becker; Wolfgang Freude; Juerg Leuthold

We examine the relation between optical signal-to-noise ratio (OSNR), error vector magnitude (EVM), and bit-error ratio (BER). Theoretical results and numerical simulations are compared to measured values of OSNR, EVM, and BER. We conclude that the EVM is an appropriate metric for optical channels limited by additive white Gaussian noise. Results are supported by experiments with six modulation formats at symbol rates of 20 and 25 GBd generated by a software-defined transmitter.


Optics Express | 2010

Simple all-optical FFT scheme enabling Tbit/s real-time signal processing

David Hillerkuss; Marcus Winter; M. Teschke; A. Marculescu; J. Li; G. Sigurdsson; K. Worms; S. Ben Ezra; N. Narkiss; Wolfgang Freude; Juerg Leuthold

A practical scheme to perform the fast Fourier transform in the optical domain is introduced. Optical real-time FFT signal processing is performed at speeds far beyond the limits of electronic digital processing, and with negligible energy consumption. To illustrate the power of the method we demonstrate an optical 400 Gbit/s OFDM receiver. It performs an optical real-time FFT on the consolidated OFDM data stream, thereby demultiplexing the signal into lower bit rate subcarrier tributaries, which can then be processed electronically.


Optics Express | 2012

Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM.

Rene Schmogrow; Marcus Winter; Matthias Meyer; David Hillerkuss; Stefan Wolf; Benedikt Baeuerle; A. Ludwig; Bernd Nebendahl; Shalva Ben-Ezra; Joachim Meyer; M. Dreschmann; Michael Huebner; Jürgen Becker; Christian Koos; Wolfgang Freude; Juerg Leuthold

Nyquist sinc-pulse shaping provides spectral efficiencies close to the theoretical limit. In this paper we discuss the analogy to optical orthogonal frequency division multiplexing and compare both techniques with respect to spectral efficiency and peak to average power ratio. We then show that using appropriate algorithms, Nyquist pulse shaped modulation formats can be encoded on a single wavelength at speeds beyond 100 Gbit/s in real-time. Finally we discuss the proper reception of Nyquist pulses.


Optics Express | 2012

Photonic wire bonding: a novel concept for chip-scale interconnects.

Nicole Lindenmann; Gerhard Balthasar; David Hillerkuss; Rene Schmogrow; Meinert Jordan; Juerg Leuthold; Wolfgang Freude; Christian Koos

Photonic integration requires a versatile packaging technology that enables low-loss interconnects between photonic chips in three-dimensional configurations. In this paper we introduce the concept of photonic wire bonding, where polymer waveguides with three-dimensional freeform geometries are used to bridge the gap between nanophotonic circuits located on different chips. In a proof-of-principle experiment, we demonstrate the fabrication of single-mode photonic wire bonds (PWB) by direct-write two-photon lithography. First-generation prototypes allow for efficient broadband coupling with average insertion losses of only 1.6 dB in the C-band and can carry wavelength-division multiplexing signals with multi-Tbit/s data rates. Photonic wire bonding is well suited for automated mass production, and we expect the technology to enable optical multi-chip systems with enhanced performance and flexibility.Photonic integration has witnessed tremendous progress over the last years, and chip-scale transceiver systems with Terabit/s data rates have come into reach. However, as on-chip integration density increases, efficient off-chip interfaces are becoming more and more crucial. A technological breakthrough is considered indispensable to cope with the challenges arising from large-scale photonic integration, and this particularly applies to short-distance optical interconnects. In this letter we introduce the concept of photonic wire bonding, where transparent waveguide wire bonds are used to bridge the gap between nanophotonic circuits located on different chips. We demonstrate for the first time the fabrication of three-dimensional freeform photonic wire bonds (PWB), and we confirm their viability in a multi-Terabit/s data transmission experiment. First-generation prototypes allow for efficient broadband coupling with overall losses of only 1.6 dB. Photonic wire bonding will enable flexible optical multi-chip assemblies, thereby challenging the current paradigm of highly-complex monolithic integration.


IEEE Photonics Technology Letters | 2010

Real-Time Software-Defined Multiformat Transmitter Generating 64QAM at 28 GBd

Rene Schmogrow; David Hillerkuss; M. Dreschmann; Michael Huebner; Marcus Winter; Joachim Meyer; Bernd Nebendahl; Christian Koos; Jürgen Becker; Wolfgang Freude; Juerg Leuthold

We demonstrate a software-defined real-time optical multiformat transmitter. Here, eight different modulation formats are shown. Data rate and modulation formats are defined through software accessible look-up tables enabling format switching in the nanosecond regime without changing the transmitter hardware. No data are lost during the switching process. SP-64 quadrature amplitude modulation at 28 Gbd has been generated and tested. This allows us to generate a 336-Gb/s real-time pseudorandom bit sequence in a dual polarization setup.


IEEE\/OSA Journal of Optical Communications and Networking | 2012

Single-laser 32.5 Tbit/s Nyquist WDM transmission

David Hillerkuss; Rene Schmogrow; Matthias Meyer; Stefan Wolf; Meinert Jordan; Philipp Kleinow; Nicole Lindenmann; Philipp Schindler; Argishti Melikyan; Xin Yang; Shalva Ben-Ezra; Bernd Nebendahl; M. Dreschmann; Joachim Meyer; Francesca Parmigiani; Periklis Petropoulos; Bojan Resan; Aandreas Oehler; Kurt J. Weingarten; Lars Altenhain; T. Ellermeyer; Matthias Moeller; Michael Huebner; Juergen Becker; Christian Koos; Wolfgang Freude; Juerg Leuthold

Single-laser 32.5 Tbit/s 16QAM Nyquist-WDM transmission with 325 carriers over 227 km at a net spectral efficiency of 6.4 bit/s/Hz is reported.


Optics Express | 2012

Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators

Hui Yu; Marianna Pantouvaki; Joris Van Campenhout; Dietmar Korn; Katarzyna Komorowska; Pieter Dumon; Yanlu Li; Peter Verheyen; P. Absil; Luca Alloatti; David Hillerkuss; Juerg Leuthold; Roel Baets; Wim Bogaerts

Carrier-depletion based silicon modulators with lateral and interdigitated PN junctions are compared systematically on the same fabrication platform. The interdigitated diode is shown to outperform the lateral diode in achieving a low VπLπ of 0.62 V∙cm with comparable propagation loss at the expense of a higher depletion capacitance. The low VπLπ of the interdigitated PN junction is employed to demonstrate 10 Gbit/s modulation with 7.5 dB extinction ration from a 500 µm long device whose static insertion loss is 2.8 dB. In addition, up to 40 Gbit/s modulation is demonstrated for a 3 mm long device comprising a lateral diode and a co-designed traveling wave electrode.


optical fiber communication conference | 2010

Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s

David Hillerkuss; T. Schellinger; Rene Schmogrow; Marcus Winter; T. Vallaitis; R. Bonk; A. Marculescu; J. Li; M. Dreschmann; Joachim Meyer; S. Ben Ezra; N. Narkiss; Bernd Nebendahl; Francesca Parmigiani; Periklis Petropoulos; Bojan Resan; Kurt J. Weingarten; T. Ellermeyer; Joachim Lutz; M. Möller; Michael Huebner; Jürgen Becker; Christian Koos; Wolfgang Freude; Juerg Leuthold

OFDM data with line rates of 5.4 Tbit/s or 10.8 Tbit/s are generated and decoded with a new real-time all-optical FFT receiver. Each of 75 carriers of a comb source is encoded with 18 GBd QPSK or 16-QAM.


Optics Express | 2012

512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz.

Rene Schmogrow; David Hillerkuss; Stefan Wolf; B. Bäuerle; Marcus Winter; P. Kleinow; Bernd Nebendahl; Thomas Dippon; Philipp Schindler; Christian Koos; Wolfgang Freude; Juerg Leuthold

We demonstrate for the first time transmission of 54 Gbit/s and 48 Gbit/s over 44 km and 150 km, respectively, utilizing an optical bandwidth of only 3 GHz. We used polarization division multiplexed 512QAM and 256QAM modulation formats in combination with Nyquist pulse shaping having virtually zero roll-off. The resulting spectral efficiencies range up to 18 bit/s/Hz and 16 bit/s/Hz, respectively. Taking into account the overhead required for forward error correction, the occupied signal bandwidth corresponds to net spectral efficiencies of 14.4 bit/s/Hz and 15 bit/s/Hz, which could be achieved in a wavelength division multiplexed network without spectral guard bands.


Optics Express | 2011

Real-time OFDM transmitter beyond 100 Gbit/s

Rene Schmogrow; Marcus Winter; David Hillerkuss; Bernd Nebendahl; Shalva Ben-Ezra; Joachim Meyer; M. Dreschmann; Michael Huebner; Jürgen Becker; Christian Koos; Wolfgang Freude; Juerg Leuthold

Real-time OFDM transmitters breaking the 100 Gbit/s barrier require high-performance, usually FPGA-based digital signal processing. Especially the Fourier transform as a key operation of any OFDM system must be optimized with respect to performance and chip area utilization. Here, we demonstrate an alternative to the widely adopted fast Fourier transform algorithm. Based on an extensive yet optimized use of pre-set look-up tables, our FPGA implementation supports fast reconfigurable channel equalization and switching times in the nanosecond range without re-loading any code. We demonstrate the potential of the concept by realizing the first real-time single polarization OFDM transmitter generating a 101.5 Gbit/s data stream by modulating 58 subcarriers with 16QAM.

Collaboration


Dive into the David Hillerkuss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Freude

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Koos

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rene Schmogrow

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Arne Josten

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Benedikt Baeuerle

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Li

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Dreschmann

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Bonk

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge