Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Hoisington is active.

Publication


Featured researches published by David Hoisington.


Theoretical and Applied Genetics | 1997

Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies

Jean-Marcel Ribaut; C. Jiang; D. González-de-León; Gregory O. Edmeades; David Hoisington

Abstract In most maize-growing areas yield reductions due to drought have been observed. Drought at flowering time is, in some cases, the most damaging. In the experiment reported here, trials with F3 families, derived from a segregating F2 population, were conducted in the field under well-watered conditions (WW) and two other water-stress regimes affecting flowering (intermediate stress, IS, and severe stress, SS). Several yield components were measured on equal numbers of plants per family: grain yield (GY), ear number (ENO), kernel number (KNO), and 100-kernel weight (HKWT). Correlation analysis of these traits showed that they were not independent of each other. Drought resulted in a 60% decrease of GY under SS conditions. By comparing yield under WW and SS conditions, the families that performed best under WW conditions were found to be proportionately more affected by stress, and the yield reductions due to SS conditions were inversely proportional to the performance under drought. Moreover, no positive correlation was observed between a drought-tolerance index (DTI) and yield under WW conditions. The correlation between GY under WW and SS conditions was 0.31. Therefore, in this experiment, selection for yield improvement under WW conditions only, would not be very effective for yield improvement under drought. Quantitative trait loci (QTLs) were identified for GY, ENO and KNO using composite interval mapping (CIM). No major QTLs, expressing more then 13% of the phenotypic variance, were detected for any of these traits, and there were inconsistencies in their genomic positions across water regimes. The use of CIM allowed the evaluation of QTL-by-environment interactions (Q×E) and could thus identify “stable” QTLs CIMMYT, Apartado Postal 6-641, 06600 Mexico D.F., Mexico across drought environments. Two such QTLs for GY, on chromosomes 1 and 10, coincided with two stable QTLs for KNO. Moreover, four genomic regions were identified for the expression of both GY and the anthesis-silking interval (ASI). In three of these, the allelic contributions were for short ASI and GY increase, while for that on chromosome 10 the allelic contribution for short ASI corresponded to a yield reduction. From these results, we hypothesize that to improve yield under drought, marker-assisted selection (MAS) using only the QTLs involved in the expression of yield components appears not to be the best strategy, and neither does MAS using only QTLs involved in the expression of ASI. We would therefore favour a MAS strategy that takes into account a combination of the “best QTLs” for different traits. These QTLs should be stable across target environments, represent the largest percentage possible of the phenotypic variance, and, though not involved directly in the expression of yield, should be involved in the expression of traits significantly correlated with yield, such as ASI.


Trends in Plant Science | 1998

Marker-assisted selection: new tools and strategies

Jean-Marcel Ribaut; David Hoisington

The development of molecular genetics and associated technology has facilitated a quantum leap in our understanding of the underlying genetics of the traits sought through plant breeding. The usefulness of DNA markers for germplasm characterization, and of marker-assisted selection—the manipulation through DNA markers of genomic regions that are involved in the expression of traits of interest—for single-gene transfer, has been well demonstrated. However, when several genomic regions must be manipulated, marker-assisted selection has turned out to be less useful. The efficient and effective application of marker-assisted selection for polygenic trait improvement certainly needs new technology but, more importantly, it requires the development of innovative strategies that bypass the conceptual bottlenecks imposed by current approaches.


Theoretical and Applied Genetics | 1996

Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval

Jean-Marcel Ribaut; David Hoisington; J. A. Deutsch; C. Jiang; D. González-de-León

Drought is an important climatic phenomenon which, after soil infertility, ranks as the second most severe limitation to maize production in developing countries. When drought stress occurs just before or during the flowering period, a delay in silking is observed, resulting in an increase in the length of the anthesis-silking interval (ASI) and in a decrease in grain yield. Selection for reduced ASI in tropical open-pollinated varieties has been shown to be correlated with improved yields under drought stress. Since efficient selection for drought tolerance requires carefully managed experimental conditions, molecular markers were used to identify the genomic segments responsible for the expression of ASI, with the final aim of developing marker-assisted selection (MAS) strategies. An F2population of 234 individuals was genotyped at 142 loci and F3 families were evaluated in the field under several water regimes for male flowering (MFLW), male sterility (STER), female flowering (FFLW) and ASI. The genetic variance of ASI increased as a function of the stress intensity, and the broad-sense heritabilites of MFLW, FFLW and ASI were high under stress conditions, being 86%, 82% and 78%, respectively. Putative quantitative trait loci (QTLs) involved in the expression of MFLW and/or FFLW under drought were detected on chromosomes 1, 2, 4, 5, 8, 9 and 10, accounting for around 48% of the phenotypic variance for both traits. For ASI, six putative QTLs were identified under drought on chromosomes 1, 2, 5, 6, 8 and 10, and together accounted for approximately 47% of the phenotypic variance. Under water stress conditions, four QTLs were common for the expression of MFLW and FFLW, one for the expression of ASI and MFLW, and four for the expression of ASI and FFLW. The number of common QTLs for two traits was related to the level of linear correlation between these two traits. Segregation for ASI was found to be transgressive with the drought-susceptible parent contributing alleles for reduced ASI (4 days) at two QTL positions. Alleles contributed by the resistant line at the other four QTLs were responsible for a 7-day reduction of ASI. These four QTLs represented around 9% of the linkage map, and were stable over years and stress levels. It is argued that MAS based on ASI QTLs should be a powerful tool for improving drought tolerance of tropical maize inbred lines.


Theoretical and Applied Genetics | 2003

Use of SSRs for establishing heterotic groups in subtropical maize

Jochen C. Reif; Albrecht E. Melchinger; X.C. Xia; Marilyn L. Warburton; David Hoisington; S. K. Vasal; D.L. Beck; M. Bohn; Matthias Frisch

Abstract Heterotic groups and patterns are of fundamental importance in hybrid breeding. The objectives of our research were to: (1) investigate the relationship of simple sequence repeats (SSR) based genetic distances between populations and panmictic midparent heterosis (PMPH) in a broad range of CIMMYT maize germplasm, (2) evaluate the usefulness of SSR markers for defining heterotic groups and patterns in subtropical germplasm, and (3) examine applications of SSR markers for broadening heterotic groups by systematic introgression of other germplasm. Published data of two diallels and one factorial evaluated for grain yield were re-analyzed to calculate the PMPH in population hybrids. Additionally, 20 pools and populations widely used in CIMMYTs breeding program were assayed with 83 SSR markers covering the entire maize genome. Correlations of squared modified Rogers distance (MRD2) and PMPH were mostly positive and significant, but adaption problems caused deviations in some cases. For intermediate- and early-maturity subtropical germplasm, two heterotic groups could be suggested consisting of a flint and dent composite. We concluded that the relationships between the populations obtained by SSR analyses are in excellent agreement with pedigree information. SSR markers are a valuable complementation to field trials for identifying heterotic groups and can be used to introgress exotic germplasm systematically.


Theoretical and Applied Genetics | 1993

Molecular markers for plant breeding: comparisons of RFLP and RAPD genotyping costs.

M. Ragot; David Hoisington

Three molecular marker protocols, chemiluminescent restriction fragment length polymorphisms (c-RFLPs), radioactivity-based restriction fragment length polymorphisms (r-RFLPs), and randomly amplified DNA polymorphisms (RAPDs) were compared in terms of cost and time efficiency. Estimates of cost of supplies and time requirements were obtained from simulations of maize (Zea mays L.) genotyping experiments utilizing protocols currently in use. The increase in total cost with increasing numbers of individuals genotyped and markers analyzed is higher for RAPDs than for RFLPs. RAPDs were generally found to be more cost and time efficient for studies involving small sample sizes, while RFLPs have the advantage for larger sample sizes. Because of the shorter exposure times involved, c-RFLPs require less time than r-RFLPs to obtain a given amount of information. Variations in the protocols, such as number of re-uses of Southern blots or cost of Taq DNA polymerase per reaction of amplification, also affect the relative merits of RAPDs and RFLPs. Two examples were analyzed where molecular markers are used: a germ plasm survey and quantitative trait loci (QTL) mapping in a segregating population. No protocol was found to be the most cost and time efficient over the entire range of sample sizes and number of marker loci studied.


Theoretical and Applied Genetics | 1996

Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats

S. Fennell; N. Bohorova; M. van Ginkel; José Crossa; David Hoisington

Forty-eight bread wheat (Triticum aestivum L.) released cultivars and elite advanced lines were evaluated for their ability to produce embryogenic callus using three different media. Basal N6 medium supplemented with dicamba (E1), MS medium containing 2,4-D (E3) or MS medium containing 2,4-D plus different amino acids (E5) were used for callus initiation and maintenance. Plant regeneration was achieved on basal MS medium with indole-3-acetic acid (IAA) and 6-benzylamino purine (BAP) and rooting on MS with 1-naphthaleneacetic acid (NAA). Percentage regeneration varied widely with both genotype and initiation medium, with values ranging from 2% to 94%. The number of plantlets produced per embryo ranged from 6 to 42. Thirteen genotypes showed at least 50% regeneration after culture on E5 medium; 3 genotypes after culture on E3 initiation medium and 1 after initiation on E1. After four subcultures, over a 16-week period, 41 genotypes (85%) lost their ability to regenerate plants while the remaining 7 lines (15%) retained plant regeneration potential but at reduced levels. E3 medium was found to be the best for maintaining regeneration potential after four subcultures.


Theoretical and Applied Genetics | 1999

Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers

C. Jiang; Gregory O. Edmeades; Ian P. Armstead; H. R. Lafitte; Michael D. Hayward; David Hoisington

Abstract Molecular-marker loci were used to investigate the adaptation differences between highland and lowland tropical maize. An F2 population from the cross of two inbred lines independently derived from highland and lowland maize germplasm was developed, and extracted F3:4 lines were phenotype in replicated field trials at four thermally diverse tropical testing sites, ranging from lowland to extreme highland (mean growing season temperature range 13.2–24.6°C). Traits closely related with adaptation, such as biomass and grain yield, yield components, days from sowing to male and female flowering, total leaf number, plant height and number of primary tassel branches (TBN), were analyzed. A large line × environment interaction was observed for most traits. The genetic basis of this interaction was reflected by significant, but systematic, changes from lowland to highland sites in the correlation between the trait value and genomic composition (designated by the proportion of marker alleles with the same origin). Joint analysis of quantitative trait loci (QTLs) over sites detected 5–8 QTLs for each trait (except disease scores, with data only from one site). With the exception of one QTL for TBN, none of these accounted for more than 15% of the total phenotypic variation. In total, detected QTLs accounted for 24–61% of the variation at each site on average. For yield, yield components and disease scores, alleles generally favored the site of origin. Highland-derived alleles had little effect at lowland sites, while lowland-derived alleles showed relatively broader adaptation. Gradual changes in the estimated QTL effects with increasing mean site temperature were observed, and paralleled the observed patterns of adaptation in highland and lowland germplasm. Several clusters of QTLs for different traits reflected the relative importance in the adaptation differences between the two germplasm types, and pleiotropy is suggested as the main cause for the clustering. Breeding for broad thermal adaptation should be possible by pooling genes showing adaptation to specific thermal regimes, though perhaps at the expense of reduced progress for adaptation to a specific site. Molecular marker-assisted selection would be an ideal tool for this task, since it could greatly reduce the linkage drag caused by the unintentional transfer of undesirable traits.


Theoretical and Applied Genetics | 1999

Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables

José Crossa; Mateo Vargas; F. A. van Eeuwijk; C. Jiang; Gregory O. Edmeades; David Hoisington

Abstract An understanding of the genetic and environmental basis of genotype×environment interaction (GEI) is of fundamental importance in plant breeding. In mapping quantitative trait loci (QTLs), suitable genetic populations are grown in different environments causing QTLs×environment interaction (QEI). The main objective of the present study is to show how Partial Least Squares (PLS) regression and Factorial Regression (FR) models using genetic markers and environmental covariables can be used for studying QEI related to GEI. Biomass data were analyzed from a multi-environment trial consisting of 161 lines from a F3:4 maize segregating population originally created with the purpose of mapping QTLs loci and investigating adaptation differences between highland and lowland tropical maize. PLS and FR methods detected 30 genetic markers (out of 86) that explained a sizeable proportion of the interaction of maize lines over four contrasting environments involving two low-altitude sites, one intermediate-altitude site, and one high-altitude site for biomass production. Based on a previous study, most of the 30 markers were associated with QTLs for biomass and exhibited significant QEI. It was found that marker loci in lines with positive GEI for the highland environments contained more highland alleles, whereas marker loci in lines with positive GEI for intermediate and lowland environments contained more lowland alleles. In addition, PLS and FR models identified maximum temperature as the most-important environmental covariable for GEI. Using a stepwise variable selection procedure, a FR model was constructed for GEI and QEI that exclusively included cross products between genetic markers and environmental covariables. Higher maximum temperature in low- and intermediate-altitude sites affected the expression of some QTLs, while minimum temperature affected the expression of other QTLs.


Theoretical and Applied Genetics | 1999

Genetic mapping of maize streak virus resistance from the Mascarene source : II. Resistance in line CIRAD390 and stability across germplasm

Alix Pernet; David Hoisington; Jacques Dintinger; D. Jewell; C. Jiang; Mireille Khairallah; P. Letourmy; Jean-Leu Marchand; Jean-Christophe Glaszmann; D. González de León

Abstract The streak disease has a major effect on maize in sub-Saharan Africa. Various genetic factors for resistance to the virus have been identified and mapped in several populations; these factors derive from different sources of resistance. We have focused on the Réunion island source and have recently identified several factors in the D211 line. A second very resistant line, CIRAD390, was crossed to the same susceptible parent, B73. The linkage map comprised 124 RFLP markers, of which 79 were common with the D211×B73 map. A row-column design was used to evaluate the resistance to maize streak virus (MSV) of 191 F2:3 families under artificial infestation at two locations: Harare (Zimbabwe) and in Réunion island. Weekly ratings of resistance were taken and disease incidence and severity calculated. QTL analyses were conducted for each scoring date and for the integration over time of the disease scores, of incidence, and of severity. Heritability estimates (71–98%) were as high as for the D211×B73 population. Eight QTLs were detected on chromosomes 1, 2, 3, 5 (two QTLs), 6, 8, and 10. The chr1-QTL explained the highest proportion of phenotypic variation, about 45%. The QTLs on chromosomes 1, 2, and 10 were located in the same chromosomal bin as QTLs for MSV resistance in the D211×B73 population. In a simultaneous fit, QTLs explained together 43–67% of the phenotypic variation. The QTLs on chromosomes 3, 5, and 6 appeared to be specific for one or the other component of the resistance. For the chr3-QTL, resistance was contributed by the susceptible parent. There were significant QTL × environment interactions for some of the variables studied, but QTLs were stable in the two environments. They also appeared to be stable over time. Global gene action ranged from partial dominance to overdominance, except for disease severity. Some additional putative QTLs were also detected. The major QTL on chromosome 1 seemed to be common to the other sources of resistance, namely Tzi4, a tolerant line from IITA, and CML202 from CIMMYT. However, the distribution of the other QTLs within the genome revealed differences in Réunion germplasm and across these other resistance sources. This diversity is of great importance when considering the durability of the resistance.


Theoretical and Applied Genetics | 2001

Novel synthetic Bacillus thuringiensiscry1B gene and the cry1B-cry1Ab translational fusion confer resistance to southwestern corn borer, sugarcane borer and fall armyworm in transgenic tropical maize

N. Bohorova; Roger Frutos; Monique Royer; Pilar Estanol; M. Pacheco; Q. Rascon; S. McLean; David Hoisington

Abstract  In order to develop a resistance management strategy to control tropical pests based on the co-expression of different toxins, a fully modified Bacillus thuringiensiscry1B gene and the translational fusion cry1B-cry1Ab gene have been developed. Both constructs were cloned under the control of a maize ubiquitin-1 or a rice actin-1 promoter and linked to the bar gene driven by the CaMV 35S promoter. Immature embryos from the tropical lines CML72, CML216, and their hybrids, were used as the target for transformation by microprojectile bombardment. Twenty five percent of the transformed maize plants with cry1B expressed a protein that is active against southwestern corn borer and sugarcane borer. Ten percent of the transgenic maize expressed single fusion proteins from the translational fusion gene cry1B-1Ab and showed resistance to these two pests as well as to the fall armyworm. Transgenic maize plants that carried the cry1B gene in T1 to T3 progenies transmitted trangenes with expected Mendelian segregation and conferred resistance to the two target insects. Molecular analyses confirmed the cry genes integration, the copy number, the size of protein(s) expressed in maize plants, the transmission, and the inheritance of the introduced cry gene. These new transgenic products will provide another recourse for reducing the build-up of resistance in pest populations.

Collaboration


Dive into the David Hoisington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marilyn L. Warburton

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

C. Jiang

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Jean-Marcel Ribaut

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

M. M. Khairallah

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

N. Bohorova

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. González‐de‐León

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Mireille Khairallah

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge