Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Holcman is active.

Publication


Featured researches published by David Holcman.


Nature Reviews Neuroscience | 2010

Astroglial networks: a step further in neuroglial and gliovascular interactions

Christian Giaume; Annette Koulakoff; Lisa Roux; David Holcman; Nathalie Rouach

Dynamic aspects of interactions between astrocytes, neurons and the vasculature have recently been in the neuroscience spotlight. It has emerged that not only neurons but also astrocytes are organized into networks. Whereas neuronal networks exchange information through electrical and chemical synapses, astrocytes are interconnected through gap junction channels that are regulated by extra- and intracellular signals and allow exchange of information. This intercellular communication between glia has implications for neuroglial and gliovascular interactions and hence has added another level of complexity to our understanding of brain function.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Astroglial networks scale synaptic activity and plasticity

Ulrike Pannasch; Lydia Vargova; Jürgen Reingruber; Pascal Ezan; David Holcman; Christian Giaume; Eva Syková; Nathalie Rouach

Astrocytes dynamically interact with neurons to regulate synaptic transmission. Although the gap junction proteins connexin 30 (Cx30) and connexin 43 (Cx43) mediate the extensive network organization of astrocytes, their role in synaptic physiology is unknown. Here we show, by inactivating Cx30 and Cx43 genes, that astroglial networks tone down hippocampal synaptic transmission in CA1 pyramidal neurons. Gap junctional networking facilitates extracellular glutamate and potassium removal during synaptic activity through modulation of astroglial clearance rate and extracellular space volume. This regulation limits neuronal excitability, release probability, and insertion of postsynaptic AMPA receptors, silencing synapses. By controlling synaptic strength, connexins play an important role in synaptic plasticity. Altogether, these results establish connexins as critical proteins for extracellular homeostasis, important for the formation of functional synapses.


PLOS Computational Biology | 2005

The Emergence of Up and Down States in Cortical Networks

David Holcman; Misha Tsodyks

The cerebral cortex is continuously active in the absence of external stimuli. An example of this spontaneous activity is the voltage transition between an Up and a Down state, observed simultaneously at individual neurons. Since this phenomenon could be of critical importance for working memory and attention, its explanation could reveal some fundamental properties of cortical organization. To identify a possible scenario for the dynamics of Up–Down states, we analyze a reduced stochastic dynamical system that models an interconnected network of excitatory neurons with activity-dependent synaptic depression. The model reveals that when the total synaptic connection strength exceeds a certain threshold, the phase space of the dynamical system contains two attractors, interpreted as Up and Down states. In that case, synaptic noise causes transitions between the states. Moreover, an external stimulation producing a depolarization increases the time spent in the Up state, as observed experimentally. We therefore propose that the existence of Up–Down states is a fundamental and inherent property of a noisy neural ensemble with sufficiently strong synaptic connections.


Nature Neuroscience | 2014

Connexin 30 sets synaptic strength by controlling astroglial synapse invasion

Ulrike Pannasch; Dominik Freche; Glenn Dallérac; Grégory Ghézali; Carole Escartin; Pascal Ezan; Martine Cohen-Salmon; Karim Benchenane; Verónica Abudara; Amandine Dufour; Joachim H. R. Lübke; Nicole Déglon; Graham Knott; David Holcman; Nathalie Rouach

Astrocytes play active roles in brain physiology by dynamic interactions with neurons. Connexin 30, one of the two main astroglial gap-junction subunits, is thought to be involved in behavioral and basic cognitive processes. However, the underlying cellular and molecular mechanisms are unknown. We show here in mice that connexin 30 controls hippocampal excitatory synaptic transmission through modulation of astroglial glutamate transport, which directly alters synaptic glutamate levels. Unexpectedly, we found that connexin 30 regulated cell adhesion and migration and that connexin 30 modulation of glutamate transport, occurring independently of its channel function, was mediated by morphological changes controlling insertion of astroglial processes into synaptic clefts. By setting excitatory synaptic strength, connexin 30 plays an important role in long-term synaptic plasticity and in hippocampus-based contextual memory. Taken together, these results establish connexin 30 as a critical regulator of synaptic strength by controlling the synaptic location of astroglial processes.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The narrow escape problem for diffusion in cellular microdomains.

Z. Schuss; Amit Singer; David Holcman

The study of the diffusive motion of ions or molecules in confined biological microdomains requires the derivation of the explicit dependence of quantities, such as the decay rate of the population or the forward chemical reaction rate constant on the geometry of the domain. Here, we obtain this explicit dependence for a model of a Brownian particle (ion, molecule, or protein) confined to a bounded domain (a compartment or a cell) by a reflecting boundary, except for a small window through which it can escape. We call the calculation of the mean escape time the narrow escape problem. This time diverges as the window shrinks, thus rendering the calculation a singular perturbation problem. Here, we present asymptotic formulas for the mean escape time in several cases, including regular domains in two and three dimensions and in some singular domains in two dimensions. The mean escape time comes up in many applications, because it represents the mean time it takes for a molecule to hit a target binding site. We present several applications in cellular biology: calcium decay in dendritic spines, a Markov model of multicomponent chemical reactions in microdomains, dynamics of receptor diffusion on the surface of neurons, and vesicle trafficking inside a cell.


Journal of Physics A | 2014

Time scale of diffusion in molecular and cellular biology

David Holcman; Zeev Schuss

Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging

Nathanael Hoze; Deepak Nair; Eric Hosy; Christian Sieben; Suliana Manley; Andreas Herrmann; Jean-Baptiste Sibarita; Daniel Choquet; David Holcman

Simultaneous tracking of many thousands of individual particles in live cells is possible now with the advent of high-density superresolution imaging methods. We present an approach to extract local biophysical properties of cell-particle interaction from such newly acquired large collection of data. Because classical methods do not keep the spatial localization of individual trajectories, it is not possible to access localized biophysical parameters. In contrast, by combining the high-density superresolution imaging data with the present analysis, we determine the local properties of protein dynamics. We specifically focus on AMPA receptor (AMPAR) trafficking and estimate the strength of their molecular interaction at the subdiffraction level in hippocampal dendrites. These interactions correspond to attracting potential wells of large size, showing that the high density of AMPARs is generated by physical interactions with an ensemble of cooperative membrane surface binding sites, rather than molecular crowding or aggregation, which is the case for the membrane viral glycoprotein VSVG. We further show that AMPARs can either be pushed in or out of dendritic spines. Finally, we characterize the recurrent step of influenza trajectories. To conclude, the present analysis allows the identification of the molecular organization responsible for the heterogeneities of random trajectories in cells.


European Journal of Neuroscience | 2004

Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons.

Eduard Korkotian; David Holcman; Menahem Segal

We investigated the role of dendritic spine morphology in spine–dendrite calcium communication using novel experimental and theoretical approaches. A transient rise in [Ca2+]i was produced in individual spine heads of Fluo‐4‐loaded cultured hippocampal neurons by flash photolysis of caged calcium. Following flash photolysis in the spine head, a delayed [Ca2+]i transient was detected in the parent dendrites of only short, but not long, spines. Delayed elevated fluorescence in the dendrite of the short spines was also seen with a membrane‐bound fluorophore and fluorescence recovery from bleaching of a calcium‐bound fluorophore had a much slower kinetics, indicating that the dendritic fluorescence change reflects a genuine diffusion of free [Ca2+]i from the spine head to the parent dendrite. Calcium diffusion between spine head and the parent dendrite was regulated by calcium stores as well as by a Na–Ca exchanger. Spine length varied with the recent history of the [Ca2+]i variations in the spine, such that small numbers of calcium transients resulted in elongation of spines whereas large numbers of calcium transients caused shrinkage of the spines. Consequently, spine elongation resulted in a complete isolation of the spine from the dendrite, while shrinkage caused an enhanced coupling with the parent dendrite. These studies highlight a dynamically regulated coupling between a dendritic spine head and its parent dendrite.


Nature Structural & Molecular Biology | 2017

Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates

Michael H. Hauer; Andrew Seeber; Vijender Singh; Raphael Thierry; Ragna Sack; Assaf Amitai; Mariya Kryzhanovska; Jan Eglinger; David Holcman; Tom Owen-Hughes; Susan M. Gasser

Nucleosomes are essential for proper chromatin organization and the maintenance of genome integrity. Histones are post-translationally modified and often evicted at sites of DNA breaks, facilitating the recruitment of repair factors. Whether such chromatin changes are localized or genome-wide is debated. Here we show that cellular levels of histones drop 20–40% in response to DNA damage. This histone loss occurs from chromatin, is proteasome-mediated and requires both the DNA damage checkpoint and the INO80 nucleosome remodeler. We confirmed reductions in histone levels by stable isotope labeling of amino acids in cell culture (SILAC)-based mass spectrometry, genome-wide nucleosome mapping and fluorescence microscopy. Chromatin decompaction and increased fiber flexibility accompanied histone degradation, both in response to DNA damage and after artificial reduction of histone levels. As a result, recombination rates and DNA-repair focus turnover were enhanced. Thus, we propose that a generalized reduction in nucleosome occupancy is an integral part of the DNA damage response in yeast that provides mechanisms for enhanced chromatin mobility and homology search.


Development | 2012

Engrailed homeoprotein recruits the adenosine A1 receptor to potentiate ephrin A5 function in retinal growth cones.

Olivier Stettler; Rajiv L. Joshi; Andrea Wizenmann; Jürgen Reingruber; David Holcman; Colette Bouillot; François Castagner; Alain Prochiantz; Kenneth L. Moya

Engrailed 1 and engrailed 2 homeoprotein transcription factors (collectively Engrailed) display graded expression in the chick optic tectum where they participate in retino-tectal patterning. In vitro, extracellular Engrailed guides retinal ganglion cell (RGC) axons and synergises with ephrin A5 to provoke the collapse of temporal growth cones. In vivo disruption of endogenous extracellular Engrailed leads to misrouting of RGC axons. Here we characterise the signalling pathway of extracellular Engrailed. Our results show that Engrailed/ephrin A5 synergy in growth cone collapse involves adenosine A1 receptor activation after Engrailed-dependent ATP synthesis, followed by ATP secretion and hydrolysis to adenosine. This is, to our knowledge, the first evidence for a role of the adenosine A1 receptor in axon guidance. Based on these results, together with higher expression of the adenosine A1 receptor in temporal than nasal growth cones, we propose a computational model that illustrates how the interaction between Engrailed, ephrin A5 and adenosine could increase the precision of the retinal projection map.

Collaboration


Dive into the David Holcman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathanael Hoze

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Assaf Amitai

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Thibault Lagache

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Guerrier

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerome Cartailler

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge