Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David I. Pattison is active.

Publication


Featured researches published by David I. Pattison.


Amino Acids | 2003

Hypochlorite-induced oxidation of amino acids, peptides and proteins.

Clare L. Hawkins; David I. Pattison; Michael J. Davies

Summary. Activated phagocytes generate the potent oxidant hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is known to react with a number of biological targets including proteins, DNA, lipids and cholesterol. Proteins are likely to be major targets for reaction with HOCl within a cell due to their abundance and high reactivity with HOCl. This review summarizes information on the rate of reaction of HOCl with proteins, the nature of the intermediates formed, the mechanisms involved in protein oxidation and the products of these reactions. The predicted targets for reaction with HOCl from kinetic modeling studies and the consequences of HOCl-induced protein oxidation are also discussed.


Antioxidants & Redox Signaling | 2008

Mammalian Heme Peroxidases: From Molecular Mechanisms to Health Implications

Michael J. Davies; Clare L. Hawkins; David I. Pattison; Martin D. Rees

A marked increase in interest has occurred over the last few years in the role that mammalian heme peroxidase enzymes, primarily myeloperoxidase, eosinophil peroxidase, and lactoperoxidase, may play in both disease prevention and human pathologies. This increased interest has been sparked by developments in our understanding of polymorphisms that control the levels of these enzymes, a greater understanding of the basic chemistry and biochemistry of the oxidants formed by these species, the development of specific biomarkers that can be used in vivo to detect damage induced by these oxidants, the detection of active forms of these peroxidases at most, if not all, sites of inflammation, and a correlation between the levels of these enzymes and a number of major human pathologies. This article reviews recent developments in our understanding of the enzymology, chemistry, biochemistry and biologic roles of mammalian peroxidases and the oxidants that they generate, the potential role of these oxidants in human disease, and the use of the levels of these enzymes in disease prognosis.


Current Medicinal Chemistry | 2006

Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases.

David I. Pattison; Michael J. Davies

The heme enzyme myeloperoxidase (MPO) is released at sites of inflammation by activated leukocytes. A key function of MPO is the production of hypohalous acids (HOX, X = Cl, Br) which are strong oxidants with potent antibacterial properties. However, HOX can also damage host tissue when produced at the wrong place, time or concentration; this has been implicated in several human diseases. Thus, elevated blood and leukocyte levels of MPO are significant independent risk factors for atherosclerosis, and specific markers of HOX-mediated protein oxidation are often present at elevated levels in patients with inflammatory diseases (e.g. asthma). HOX react readily with amino acids, proteins, carbohydrates, lipids, nucleobases and antioxidants. Sulfur-containing amino acids (Cys, Met, cystine) and amines on amino acids, nucleobases, sugars and lipids are the major targets for HOX. Reaction with amines generates chloramines (RNHCl) and bromamines (RNHBr), which are more selective oxidants than HOX and are key intermediates in HOX biochemistry. As these and other products of MPO-derived oxidants are unstable, understanding the role of HOX-induced damage in disease cannot be obtained solely by stable product analysis, and knowledge of the reaction kinetics is essential. This review collates kinetic and product data for HOX, chloramine and bromamine reactions with biological substrates. It highlights how kinetic data may be used to predict the effect of HOX-mediated oxidation on complex biological targets, such as lipoproteins and extracellular matrix in atherosclerosis, or protein-DNA complexes in cancer, thereby providing a basis for unraveling the mechanisms by which these oxidants generate biological damage.


Free Radical Biology and Medicine | 2009

Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products.

Michelle Gracanin; Clare L. Hawkins; David I. Pattison; Michael J. Davies

Proteins are major biological targets for oxidative damage within cells owing to their high abundance and rapid rates of reaction with radicals and excited-state species, including singlet oxygen. Reaction of Tyr, Trp, and His residues, both free and on proteins, with singlet oxygen generates peroxides in high yield. Peroxides have also been detected on proteins within intact cells on exposure to visible light in the presence of a photosensitizer. The structures of some of these materials have been elucidated for free amino acids, but less is known about peptide- and protein-bound species. In this study we have characterized Trp-derived peroxides, radicals, and breakdown products generated on free Trp and Trp residues in peptides and proteins, using LC/MS/MS. With free Trp, seven major photoproducts were characterized, including two isomeric hydroperoxides, two alcohols, two diols, and N-formylkynurenine, consistent with singlet oxygen-mediated reactions. The hydroperoxides decompose rapidly at elevated temperatures and in the presence of reductants to the corresponding alcohols. Some of these materials were detected on proteins after complete enzymatic (Pronase) hydrolysis and LC/MS/MS quantification, providing direct evidence for peroxide formation on proteins. This approach may allow the quantification of protein modification in intact cells arising from singlet oxygen formation.


EXS | 2006

Actions of ultraviolet light on cellular structures

David I. Pattison; Michael J. Davies

Solar radiation is the primary source of human exposure to ultraviolet (UV) radiation. Overexposure without suitable protection (i.e., sunscreen and clothing) has been implicated in mutagenesis and the onset of skin cancer. These effects are believed to be initiated by UV-mediated cellular damage, with proteins and DNA as primary targets due to a combination of their UV absorption characteristics and their abundance in cells. UV radiation can mediate damage via two different mechanisms: (a) direct absorption of the incident light by the cellular components, resulting in excited state formation and subsequent chemical reaction, and (b) photosensitization mechanisms, where the light is absorbed by endogenous (or exogenous) sensitizers that are excited to their triplet states. The excited photosensitizers can induce cellular damage by two mechanisms: (a) electron transfer and hydrogen abstraction processes to yield free radicals (Type I); or (b) energy transfer with O2 to yield the reactive excited state, singlet oxygen (Type II). Direct UV absorption by DNA leads to dimers of nucleic acid bases including cyclobutane pyrimidine species and pyrimidine (6-4) pyrimidone compounds, together with their Dewar isomers. These three classes of dimers are implicated in the mutagenicity of UV radiation, which is typified by a high level of CC-->TT and C-->T transversions. Single base modifications can also occur via sensitized reactions including Type 1 and Type II processes. The main DNA product generated by (1)O2 is 8-oxo-Gua; this is a common lesion in DNA and is formed by a range of other oxidants in addition to UV. The majority of UV-induced protein damage appears to be mediated by (1)O2, which reacts preferentially with Trp, His, Tyr, Met, Cys and cystine side chains. Direct photo-oxidation reactions (particularly with short-wavelength UV) and radicals can also be formed via triplet excited states of some of these side chains. The initial products of (1)O2-mediated reactions are endoperoxides with the aromatic residues, and zwitterions with the sulfur-containing residues. These intermediates undergo a variety of further reactions, which can result in radical formation and ring-opening reactions; these result in significant yields of protein cross-links and aggregates, but little protein fragmentation. This review discusses the formation of these UV-induced modifications and their downstream consequences with particular reference to mutagenesis and alterations in protein structure and function.


Chemical Research in Toxicology | 2009

What Are the Plasma Targets of the Oxidant Hypochlorous Acid? A Kinetic Modeling Approach

David I. Pattison; Clare L. Hawkins; Michael J. Davies

Myeloperoxidase (MPO) is a heme enzyme, released by activated leukocytes at sites of inflammation, which catalyzes the formation of the potent oxidant, hypochlorous acid (HOCl), from H2O2. HOCl is a key component of the inflammatory response and is bactericidal but has been linked with several human pathologies as a result of damage to host tissue. Elevated plasma MPO levels are a strong independent risk factor, and predictor of outcomes, for cardiovascular disease. Rate constants for reaction of HOCl with individual biological targets and the products of these reactions have been determined, but the targets of HOCl in complex biological fluids such as plasma are incompletely defined. In this study, rate constants (M(-1) s(-1)) for the reactions of ascorbate with HOCl (ca. 6 x 10(6)) and imidazole chloramine (7.7 x 10(4)) have been determined to supplement known kinetic parameters. HOCl-mediated oxidation of the major plasma protein, albumin, was investigated both experimentally and computationally; these approaches provide consistent data. The computational studies were extended to examine the fate of HOCl in plasma. The model predicts that plasma proteins consume the majority of HOCl with limited damage to other materials. Ascorbate or alpha-tocopherol, even at the levels achieved in human supplementation studies, do not attenuate these reactions. In contrast, elevated levels of thiocyanate ions (SCN(-)), as detected in heavy smokers, can modulate HOCl-mediated reactions as a result of the formation of the highly specific oxidant hypothiocyanous acid (HOSCN). These observations support the hypothesis that MPO-generated HOSCN is a key agent in smoking-enhanced atherosclerosis.


Biochemical Journal | 2009

Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: absolute rate constants and assessment of biological relevance

Ojia Skaff; David I. Pattison; Michael J. Davies

MPO (myeloperoxidase) catalyses the oxidation of chloride, bromide and thiocyanate by H(2)O(2) to HOCl (hypochlorous acid), HOBr (hypobromous acid) and HOSCN (hypothiocyanous acid, also know as cyanosulfenic acid) respectively. Specificity constants indicate that thiocyanate, SCN-, is a major substrate for MPO. HOSCN is also a major oxidant generated by other peroxidases including salivary, gastric and eosinophil peroxidases. Whereas HOCl and HOBr are powerful oxidizing agents, HOSCN appears to be a less reactive, but more thiol-specific oxidant. Although it is established that HOSCN selectively targets thiols, absolute kinetic data for the reactions of thiols with HOSCN are absent from the literature. This study shows for the first time that the reactions of HOSCN with low-molecular-mass thiol residues occur with rate constants in the range from 7.3 x 10(3) M(-1).s(-1) (for N-acetyl-cysteine at pH 7.4) to 7.7 x 10(6) M(-1).s(-1) (for 5-thio-2-nitrobenzoic acid at pH 6.0). An inverse relationship between the rate of reaction and the pKa of the thiol group was observed. The rates of reaction of HOSCN with thiol-containing proteins were also investigated for four proteins (creatine kinase, BSA, beta-lactoglobulin and beta-L-crystallins). The values obtained for cysteine residues on these proteins are in the range 1 x 10(4)- 7 x 10(4) M(-1).s(-1). These second-order rate constants indicate that HOSCN is a major mediator of thiol oxidation in biological systems exposed to peroxidase/H(2)O(2) systems at (patho)physiological concentrations of halide and SCN- ions, and that HOSCN may play an important role in inflammation-induced oxidative damage.


Free Radical Research | 2012

Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids.

David I. Pattison; Michael J. Davies; Clare L. Hawkins

Abstract Myeloperoxidase (MPO) is recognised to play important roles both in the immune system and during the development of numerous human pathologies. MPO is released by activated neutrophils, monocytes and some tissue macrophages, where it catalyses the conversion of hydrogen peroxide to hypohalous acids (HOX; X = Cl, Br, SCN) in the presence of halide and pseudo-halide ions. The major reactive species produced by MPO under physiological conditions are hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN), with the ratio of these oxidants critically dependent on the concentration of thiocyanate ions (SCN−). The reactivity and selectivity of HOCl and HOSCN for biological targets are markedly different, indicating that SCN− ions have the potential to modulate both the extent and nature of oxidative damage in vivo. This article reviews recent developments in our understanding of the role of SCN− in modulating the formation of MPO-derived oxidants, particularly in respect to the differences in reaction kinetics and targets of HOCl compared to HOSCN and the ability of these two oxidants to induce damage in biological systems.


Toxicology | 2002

Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s

David I. Pattison; Roger T. Dean; Michael J. Davies

Incubation of free 3,4-dihydroxyphenylalanine (DOPA), protein-bound DOPA (PB-DOPA) and related catechols with DNA, proteins and lipids has been shown to result in oxidative damage to the target molecule. This article reviews these reactions with particular emphasis on those that occur in the presence of molecular O(2) and redox-active metal ions (e.g. Fe(3+), Cu(2+), Cr(6+)), which are known to increase the rate of DOPA oxidation. The majority of oxidative damage appears to be mediated by reactive oxygen species (ROS) such as superoxide and HO(.) radicals, though other DOPA oxidation products, including semiquinone radicals, quinones, and metal ion-DOPA complexes have also been implicated in some cases. Non-radical reactions of DOPA with suitable nucleophiles (e.g. thiol groups) can also result in modification of the target, with this process being particularly prevalent with proteins. The exacerbation of damage observed on addition of H(2)O(2) is in accord with a key role for ROS in many of these reactions.


Free Radical Biology and Medicine | 2014

Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach.

Corin Storkey; Michael J. Davies; David I. Pattison

Activated white cells use oxidants generated by the heme enzyme myeloperoxidase to kill invading pathogens. This enzyme utilizes H2O2 and Cl(-), Br(-), or SCN(-) to generate the oxidants HOCl, HOBr, and HOSCN, respectively. Whereas controlled production of these species is vital in maintaining good health, their uncontrolled or inappropriate formation (as occurs at sites of inflammation) can cause host tissue damage that has been associated with multiple inflammatory pathologies including cardiovascular diseases and cancer. Previous studies have reported that sulfur-containing species are major targets for HOCl but as the reactions are fast the only physiologically relevant kinetic data available have been extrapolated from data measured at high pH (>10). In this study these values have been determined at pH 7.4 using a newly developed competition kinetic approach that employs a fluorescently tagged methionine derivative as the competitive substrate (k(HOCl + Fmoc-Met), 1.5 × 10(8)M(-1)s(-1)). This assay was validated using the known k(HOCl + NADH) value and has allowed revised k values for the reactions of HOCl with Cys, N-acetylcysteine, and glutathione to be determined as 3.6 × 10(8), 2.9 × 10(7), and 1.24 × 10(8)M(-1)s(-1), respectively. Similar experiments with methionine derivatives yielded k values of 3.4 × 10(7)M(-1)s(-1) for Met and 1.7 × 10(8)M(-1)s(-1) for N-acetylmethionine. The k values determined here for the reaction of HOCl with thiols are up to 10-fold higher than those previously determined and further emphasize the critical importance of reactions of HOCl with thiol targets in biological systems.

Collaboration


Dive into the David I. Pattison's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corin Storkey

The Heart Research Institute

View shared research outputs
Top Co-Authors

Avatar

Luke Carroll

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Philip E. Morgan

The Heart Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jihan Talib

The Heart Research Institute

View shared research outputs
Top Co-Authors

Avatar

Naomi L. Cook

The Heart Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ojia Skaff

The Heart Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tessa J. Barrett

The Heart Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge