Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David I. Rodenhiser is active.

Publication


Featured researches published by David I. Rodenhiser.


Oncogene | 1998

CpG methylation within the 5′ regulatory region of the BRCA1 gene is tumor specific and includes a putative CREB binding site

Debora N Mancini; David I. Rodenhiser; Peter Ainsworth; Frances P. O'Malley; Shiva M. Singh; Weirong Xing; Trevor K. Archer

Breast cancer is a genetic disease arising from a series of germ-line and/or somatic DNA changes in a variety of genes, including BRCA1 and BRCA2. DNA modifications have been shown to occur by a number of mechanisms that include DNA methylation. In some cases, the aberrant methylation of CpGs within 5′ regulatory regions has led to suppression of gene activity. In this report we describe a variation in the pattern of DNA methylation within the regulatory region of the BRCA1 gene. We found no evidence of methylation at CpGs within the BRCA1 promoter in a variety of normal human tissues. However, screening of a series of randomly sampled breast carcinomas revealed the presence of CpG methylation adjacent to the BRCA1 transcription start site. One such methylated CpG occurs at a putative CREB (cAMP-responsive element binding) transcription factor binding site in the BRCA1 promoter. Gelshift assays with methylated and unmethylated BRCA1/CREB binding site oligonucleotides demonstrate that this site is sensitive to site-specific CpG methylation. These data suggest that aberrant DNA methylation at regulatory sequences in the BRCA1 locus may play a role in the transcriptional inactivation of the BRCA1 gene within subclones of breast tumors. This study represents the first evidence suggesting a role for DNA methylation in the transcriptional inactivation of the BRCA1 in human breast cancer.


Oncogene | 1999

Site-specific DNA methylation in the neurofibromatosis (NF1) promoter interferes with binding of CREB and SP1 transcription factors

Debora N Mancini; Shiva M. Singh; Trevor K. Archer; David I. Rodenhiser

Tumour suppressor genes and growth regulatory genes are frequent targets for methylation defects that can result in aberrant expression and mutagenesis. We have established a methylation map of the promoter region of the neurofibromatosis (NF1) gene and demonstrated functional sensitivity for methylation at specific sites for the SP1 and CRE binding (CREB) proteins in the NF1 regulatory region. We evaluated the methylation status of CpG dinucleotides within five promoter subregions in the human and mouse homologues of the neurofibromatosis (NF1) genes. Three 5′ subregions were found to be consistently methylated in all the tissues analysed. In contrast, DNA methylation was absent in the vicinity of the transcription start site bounded by SP1 recognition sequences. Gelshift assays showed that methylation specifically inhibits the CREB transcription factor from binding to its recognition site at the NF1 transcription start site. Furthermore, SP1 elements within the NF1 promoter are methylation sensitive, particularly when methylation is present on the antisense strand. We propose that for NF1 as with several other tumour suppressor genes, CpG methylation occurs in a complex, site-specific manner with the maintenance of a methylation-free promoter region bounded by SP1 binding sites that allow an accessible promoter to be retained. When these SP1 boundaries are breached, methylation can sweep in, rendering the promoter inaccessible for specific methylation-sensitive transcription factors and leading to a loss of functional integrity of the methylation-free CpG island.


American Journal of Human Genetics | 1997

Constitutively methylated CpG dinucleotides as mutation hot spots in the retinoblastoma gene (RB1).

Debora N Mancini; Shiva M. Singh; Peter Ainsworth; David I. Rodenhiser

A wide spectrum of mutations, ranging from point mutations to large deletions, have been described in the retinoblastoma gene (RB1). Mutations have been found throughout the gene; however, these genetic alterations do not appear to be homogeneously distributed. In particular, a significant proportion of disease-causing mutations results in the premature termination of protein synthesis, and the majority of these mutations occur as C-->T transitions at CpG dinucleotides (CpGs). Such recurrent CpG mutations, including those found in RB1, are likely the result of the deamination of 5-methylcytosine within these CpGs. In the present study, we used the sodiumbisulfite conversion method to detect cytosine methylation in representative exons of RB1. We analyzed DNA from a variety of tissues and specifically targeted CGA codons in RB1, where recurrent premature termination mutations have been reported. We found that DNA methylation within RB1 exons 8, 14, 25, and 27 appeared to be restricted to CpGs, including six CGA codons. Other codons containing methylated cytosines have not been reported to be mutated. Therefore, disease-causing mutations at CpGs in RB1 appear to be determined by several factors, including the constitutive presence of DNA methylation at cytosines within CpGs, the specific codon within which the methylated cytosine is located, and the particular region of the gene within which that codon resides.


Breast Cancer Research | 2008

Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays

David I. Rodenhiser; Joseph Andrews; Wendy Kennette; Bekim Sadikovic; Ariel Mendlowitz; Alan B. Tuck; Ann F. Chambers

IntroductionBreast cancer metastasis is a complex, multi-step biological process. Genetic mutations along with epigenetic alterations in the form of DNA methylation patterns and histone modifications contribute to metastasis-related gene expression changes and genomic instability. So far, these epigenetic contributions to breast cancer metastasis have not been well characterized, and there is only a limited understanding of the functional mechanisms affected by such epigenetic alterations. Furthermore, no genome-wide assessments have been undertaken to identify altered DNA methylation patterns in the context of metastasis and their effects on specific functional pathways or gene networks.MethodsWe have used a human gene promoter tiling microarray platform to analyze a cell line model of metastasis to lymph nodes composed of a poorly metastatic MDA-MB-468GFP human breast adenocarcinoma cell line and its highly metastatic variant (468LN). Gene networks and pathways associated with metastasis were identified, and target genes associated with epithelial–mesenchymal transition were validated with respect to DNA methylation effects on gene expression.ResultsWe integrated data from the tiling microarrays with targets identified by Ingenuity Pathways Analysis software and observed epigenetic variations in genes implicated in epithelial–mesenchymal transition and with tumor cell migration. We identified widespread genomic hypermethylation and hypomethylation events in these cells and we confirmed functional associations between methylation status and expression of the CDH1, CST6, EGFR, SNAI2 and ZEB2 genes by quantitative real-time PCR. Our data also suggest that the complex genomic reorganization present in cancer cells may be superimposed over promoter-specific methylation events that are responsible for gene-specific expression changes.ConclusionThis is the first whole-genome approach to identify genome-wide and gene-specific epigenetic alterations, and the functional consequences of these changes, in the context of breast cancer metastasis to lymph nodes. This approach allows the development of epigenetic signatures of metastasis to be used concurrently with genomic signatures to improve mapping of the evolving molecular landscape of metastasis and to permit translational approaches to target epigenetically regulated molecular pathways related to metastatic progression.


International Journal of Cancer | 2004

DNA binding sites for putative methylation boundaries in the unmethylated region of the BRCA1 promoter.

Darci T Butcher; Debora N. Mancini-DiNardo; Trevor K. Archer; David I. Rodenhiser

Changes in DNA methylation patterns are frequently observed in human cancers and are associated with a decrease in tumor suppressor gene expression. Hypermethylation of the BRCA1 promoter has been reported in a portion of sporadic breast tumours that correspond to a reduction in BRCA1 transcription and expression. Questions remain concerning the maintenance of methylation free zones in promoter regions of tumor suppressor genes in normal tissues. Sodium bisulfite based analysis of the BRCA1 promoter defines a methylation free zone in normal breast tissue that starts 650 bp upstream of the transcription start site and extends for 1.4 kb through most of the BRCA1 CpG island. We provide data implicating 2 proteins, Sp1 and CTCF, in the maintenance of this methylation‐free zone. Both of these proteins have been shown to function as methylation boundaries in other genes. Four Sp1 sites have been identified in the BRCA1 promoter by gel shift assays. In vivo binding of Sp1 has been confirmed at 2 of these sites in the BRCA1 promoter and at 2 CTCF sites that flank the unmethylated region. Our data suggest that these DNA binding sites for Sp1 and CTCF may act as boundary elements that are important in maintaining genomic integrity by delineating the normal methylation free BRCA1 promoter. Inactivation or disruption of these boundaries may facilitate an epigenetic “hit”, in this case DNA methylation, leading to BRCA1 downregulation and contributing to tumorigenesis, particularly the genesis of sporadic breast tumours.


Journal of Biological Chemistry | 2008

Genome-wide H3K9 Histone Acetylation Profiles Are Altered in Benzopyrene-treated MCF7 Breast Cancer Cells

Bekim Sadikovic; Joseph Andrews; David E. Carter; John A. Robinson; David I. Rodenhiser

Current toxicogenomic approaches generate transcriptional profiles that can identify functional gene expression signatures of environmental toxicants. However, the intricate processes governing transcription are overlaid with a complex set of molecular instructions involving epigenetic modifications. These commands regulate both gene expression and chromatin organization through coordinated sets of histone modifications and heritable DNA methylation patterns. Although the effects of specific environmental toxicants on gene expression are the subject of much study, the epigenetic effects of such compounds are poorly understood. Here we have used human promoter tiling arrays along with chromatin immunoprecipitation to identify changes in histone acetylation profiles because of chemical exposure. Chromatin from cells exposed to the polyaromatic hydrocarbon benzo(a)pyrene was immunoprecipitated with antibodies against acetylated histones. Affymetrix promoter tiling microarrays were probed to generate epigenomic profiles of hypo- and hyperacetylated chromatin localized to gene promoter regions. Statistical analyses, data mining, and expression studies revealed that treated cells possessed differentially acetylated gene promoter regions and gene-specific expression changes. This chromatin immunoprecipitation-on-chip approach permits genome-wide profiling of histone acetylation patterns that can identify chromatin-related signatures of environmental toxicants and potentially determine the molecular pathways these changes target. This approach also has potential applications for profiling histone modifications and DNA methylation changes during embryonic development, in cancer biology, and in the development and assessment of cancer therapeutics.


Oncogene | 2001

Functional analysis of CpG methylation in the BRCA1 promoter region.

Debora N Mancini DiNardo; Darci T Butcher; Dale P Robinson; Trevor K. Archer; David I. Rodenhiser

Understanding the role for DNA methylation in tumorigenesis has evolved from defining the location and extent of methylation in a variety of cancer-related genes to clarifying the functional and site-specific effects of aberrant methylation on gene expression. Our objectives were to characterize the functional effects of DNA methylation in the BRCA1 promoter and to clarify the functional status of the BRCA1 CRE (cAMP response element) motif. Luciferase reporter assays confirm that an intact CRE is important for BRCA1 expression in transient transfections. Luciferase activities were decreased in constructs where the CRE recognition sequence was altered and when constructs were methylated in vitro. Gel mobility shift and competition assays identified a DNA-protein complex recognizing the CRE motif that we were able to supershift using CREB-specific antibody. Furthermore this CRE is methylation sensitive, and we localized this methylation effect to a CpG dinucleotide within the BRCA1 CRE motif. The consequences of aberrant DNA methylation at specific transcription factor motifs, along with the multiple mutational events that can occur in a variety of essential genes such as BRCA1, paint a complex picture where both genetic and epigenetic changes contribute to tumour formation.


PLOS ONE | 2010

Multi-Platform Whole-Genome Microarray Analyses Refine the Epigenetic Signature of Breast Cancer Metastasis with Gene Expression and Copy Number

Joseph Andrews; Wendy Kennette; Jenna Pilon; Alexandra Hodgson; Alan B. Tuck; Ann F. Chambers; David I. Rodenhiser

Background We have previously identified genome-wide DNA methylation changes in a cell line model of breast cancer metastasis. These complex epigenetic changes that we observed, along with concurrent karyotype analyses, have led us to hypothesize that complex genomic alterations in cancer cells (deletions, translocations and ploidy) are superimposed over promoter-specific methylation events that are responsible for gene-specific expression changes observed in breast cancer metastasis. Methodology/Principal Findings We undertook simultaneous high-resolution, whole-genome analyses of MDA-MB-468GFP and MDA-MB-468GFP-LN human breast cancer cell lines (an isogenic, paired lymphatic metastasis cell line model) using Affymetrix gene expression (U133), promoter (1.0R), and SNP/CNV (SNP 6.0) microarray platforms to correlate data from gene expression, epigenetic (DNA methylation), and combination copy number variant/single nucleotide polymorphism microarrays. Using Partek Software and Ingenuity Pathway Analysis we integrated datasets from these three platforms and detected multiple hypomethylation and hypermethylation events. Many of these epigenetic alterations correlated with gene expression changes. In addition, gene dosage events correlated with the karyotypic differences observed between the cell lines and were reflected in specific promoter methylation patterns. Gene subsets were identified that correlated hyper (and hypo) methylation with the loss (or gain) of gene expression and in parallel, with gene dosage losses and gains, respectively. Individual gene targets from these subsets were also validated for their methylation, expression and copy number status, and susceptible gene pathways were identified that may indicate how selective advantage drives the processes of tumourigenesis and metastasis. Conclusions/Significance Our approach allows more precisely profiling of functionally relevant epigenetic signatures that are associated with cancer progression and metastasis.


Human Genetics | 1993

Identification and characterization of sporadic and inherited mutations in exon 31 of the neurofibromatosis (NF1) gene.

Peter Ainsworth; David I. Rodenhiser; M. Teresa Costa

Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders in humans, and presents with a variety of clinical symptoms, which are highly variable in expression. The mutation rate for NF1 is high, with as many as half of all cases resulting from new mutations. Although the NF1 gene has been cloned and its cDNA sequence determined, the specific role of the NF1 gene product in contributing to the NF1 phenotype has not been clarified. The characterization of NF1 mutations is one of the first steps in correlating genotype with clinical symptoms of the disease. In this paper we describe two independent mutations in exon 31 of the NF1 gene identified following polymerase chain reaction (PCR) amplification, heteroduplexing, and single strand conformational polymorphism (SSCP) analysis. One is a novel insertion that segregates with the disease phenotype in that particular family (5852insTT), while the other is a further example of the sporadic, recurrent C→T mutation previously described in the literature (C5842T). The relationship between these mutations and clinical features of NF1 presented by the patients will be discussed.


Epigenetics | 2010

Ischemia dysregulates DNA methyltransferases and p16INK4a methylation in human colorectal cancer cells

Karolina Skowronski; Sonam Dubey; David I. Rodenhiser; Brenda L. Coomber

Epigenetic modifications are involved in the initiation and progression of cancer. Expression patterns and activity of DNA methyltransferases (DNMTs) are strictly controlled in normal cells, however, regulation of these enzymes is lost in cancer cells due to unknown reasons. Cancer therapies which target DNMTs are promising treatments of hematologic cancers, but they lack effectiveness in solid tumors. Solid tumors exhibit areas of hypoxia and hypoglycaemia due to their irregular and dysfunctional vasculature, and we previously showed that hypoxia reduces global DNA methylation. Colorectal carcinoma (CRC) cells (HCT116 and 379.2; p53+/+ and p53-/-, respectively) were subjected to ischemia (hypoxia and hypoglycaemia) in vitro, and levels of DNMTs were assessed. We found a significant decrease in mRNA for DNMT1, DNMT3a and DNMT3b, and similar reductions in DNMT1 and DNMT3a protein levels were detected by western blotting. In addition, total activity levels of DNMTs (as measured by an ELISA-based DNMT activity assay) were reduced in cells exposed to hypoxic and hypoglycaemic conditions. Immunofluorescence of HCT116 tumor xenografts demonstrated an inverse relationship between ischemia (as revealed by carbonic anhydrase IX staining) and DNMT1 protein. Bisulfite sequencing of the proximal promoter region of p16INK4a showed a decrease in 5-methylcytosine following in vitro exposure to ischemia. These studies provide evidence for the down-regulation of DNMTs and modulation of methylation patterns by hypoxia and hypoglycaemia in human CRC cells, both in vitro and in vivo. Our findings suggest that ischemia, either intrinsic or induced through the use of anti-angiogenic drugs, may influence epigenetic patterning and hence tumor progression.

Collaboration


Dive into the David I. Rodenhiser's collaboration.

Top Co-Authors

Avatar

Peter Ainsworth

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Bekim Sadikovic

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Shiva M. Singh

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Laila C. Schenkel

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Joseph Andrews

London Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar

Ann F. Chambers

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Erfan Aref-Eshghi

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack Jung

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Darci T Butcher

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge