Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David I. Shreiber is active.

Publication


Featured researches published by David I. Shreiber.


Journal of Biomedical Materials Research Part A | 2008

Genipin-induced changes in collagen gels: Correlation of mechanical properties to fluorescence

Harini G. Sundararaghavan; Gary A. Monteiro; Norman A. Lapin; Yves J. Chabal; Jennifer R. Miksan; David I. Shreiber

Controlled crosslinking of collagen gels has important applications in cell and tissue mechanics as well as tissue engineering. Genipin is a natural plant extract that has been shown to crosslink biological tissues and to produce color and fluorescence changes upon crosslinking. We have characterized the effects of genipin concentration and incubation duration on the mechanical and fluorigenic properties of type I collagen gels. Gels were exposed to genipin (0, 1, 5, or 10 mM) for a defined duration (2, 4, 6, or 12 h). Mechanical properties were characterized using parallel plate rheometry, while fluorigenic properties were examined with a spectrofluorimetric plate reader and with a standard, inverted epifluorescent microscope. Additionally, Fourier transform infrared spectroscopy was used to characterize and track the crosslinking reaction in real-time. Genipin produced significant concentration- and incubation-dependent increases in the storage modulus, loss modulus, and fluorescence intensity. Storage modulus was strongly correlated to fluorescence exponentially. Minimal cytotoxicity was observed for exposure of L929 fibroblasts cultured within collagen gels to 1 mM genipin for 24 h, but significant cell death occurred for 5 and 10 mM genipin. We conclude that genipin can be used to stiffen collagen gels in a relatively short time frame, that low concentrations of genipin can be used to crosslink cell-populated collagen gels to affect cell behavior that is influenced by the mechanical properties of the tissue scaffold, and that the degree of crosslinking can be reliably assayed optically via simple fluorescence measurements.


Biotechnology and Bioengineering | 2009

Neurite growth in 3D collagen gels with gradients of mechanical properties

Harini G. Sundararaghavan; Gary A. Monteiro; Bonnie L. Firestein; David I. Shreiber

We have designed and developed a microfluidic system to study the response of cells to controlled gradients of mechanical stiffness in 3D collagen gels. An ‘H’‐shaped, source–sink network was filled with a type I collagen solution, which self‐assembled into a fibrillar gel. A 1D gradient of genipin—a natural crosslinker that also causes collagen to fluoresce upon crosslinking—was generated in the cross‐channel through the 3D collagen gel to create a gradient of crosslinks and stiffness. The gradient of stiffness was observed via fluorescence. A separate, underlying channel in the microfluidic construct allowed the introduction of cells into the gradient. Neurites from chick dorsal root ganglia explants grew significantly longer down the gradient of stiffness than up the gradient and than in control gels not treated with genipin. No changes in cell adhesion, collagen fiber size, or density were observed following crosslinking with genipin, indicating that the primary effect of genipin was on the mechanical properties of the gel. These results demonstrate that (1) the microfluidic system can be used to study durotactic behavior of cells and (2) neurite growth can be directed and enhanced by a gradient of mechanical properties, with the goal of incorporating mechanical gradients into nerve and spinal cord regenerative therapies. Biotechnol. Bioeng. 2009;102: 632–643.


Biophysical Journal | 2003

Temporal variations in cell migration and traction during fibroblast-mediated gel compaction.

David I. Shreiber; Victor H. Barocas; Robert T. Tranquillo

Current models used in our laboratory to assess the migration and traction of a population of cells within biopolymer gels are extended to investigate temporal changes in these parameters during compaction of mechanically constrained gels. The random cell migration coefficient, micro (t) is calculated using a windowing technique by regressing the mean-squared displacement of cells tracked at high magnification in three dimensions with a generalized least squares algorithm for a subset of experimental time intervals, and then shifting the window interval-by-interval until all time points are analyzed. The cell traction parameter, tau(0)(t), is determined by optimizing the solution of our anisotropic biphasic theory to tissue equivalent compaction. The windowing technique captured simulated sinusoidal and step changes in cell migration superposed on a persistent random walk in simulated cell movement. The optimization software captured simulated time dependence of compaction on cell spreading. Employment of these techniques on experimental data using rat dermal fibroblasts (RDFs) and human foreskin fibroblasts (HFFs) demonstrated that these cells exhibit different migration-traction relationships. Rat dermal fibroblast migration was negatively correlated to traction, suggesting migration was not the driving force for compaction with these cells, whereas human foreskin fibroblast migration was positively correlated to traction.


SAE transactions | 1997

IN VIVO THRESHOLDS FOR MECHANICAL INJURY TO THE BLOOD-BRAIN BARRIER

David I. Shreiber; Allison C. Bain; David F. Meaney

A finite element model (FEM) of cerebral contusion in the rat was developed and compared to experimental injury maps demonstrating blood-brain barrier (BBB) breakdown. The model was exercised at the nine unique loading conditions used experimentally. Logistic regressions of the following four variables demonstrated highly significant confidence in the prediction of the 50th percentile values (chi-squared, p less than 0.00001): maximum principal logarithmic strain (LEP), maximum principal stress (SP), strain energy density (SEN), and von Mises stress (MIS). However, only values for LEP were invariant across loading conditions. These results suggest that the BBB is most sensitive to LEP, and that breakdown occurs above a strain of 0.188 plus/minus 0.0324. (A) For the covering abstract of the conference see IRRD E201172.


Journal of Neurotrauma | 2008

Finite Element Analysis of Spinal Cord Injury in the Rat

Jason T. Maikos; Zhen Qian; Dimitris N. Metaxas; David I. Shreiber

A three-dimensional (3D) finite element model (FEM) that simulates the Impactor weight-drop experimental model of traumatic spinal cord injury (SCI) was developed. The model consists of the rat spinal cord, with distinct element sets for the gray and white matter, the cerebrospinal fluid (CSF), the dura mater, a rigid rat spinal column, and a rigid impactor. Loading conditions were taken from the average impact velocities determined from previous parallel weight-drop experiments employing a 2.5-mm-diameter, 10-g rod dropped from either 12.5 or 25 mm. The mechanical properties were calibrated by comparing the predicted displacement of the spinal cord at the impact site to that measured experimentally. Parametric studies were performed to determine the sensitivity of the model to the relevant material properties, loading conditions, and essential boundary conditions, and it was determined that the shear modulus had the greatest influence on spinal cord displacement. Additional simulations were performed where gray and white matter were prescribed different material properties. These simulations generated similar drop trajectories to the homogeneous model, but the stress and strain distributions better matched patterns of acute albumin extravasation across the blood-spinal cord barrier following weight-drop SCI, as judged by a logit analysis. A final simulation was performed where the impact site was shifted laterally by 0.35 mm. The off-center impact had little effect on the rod trajectory, but caused marked shifts in the location of stress and strain contours. Different combinations of parameter values could reproduce the impactor trajectory, which suggests that another experimental measure of the tissue response is required for validation. The FEM can be a valuable tool for understanding the injury biomechanics associated with experimental SCI to identify areas for improvement in animal models and future research to identify thresholds for injury.


Journal of Neuropathology and Experimental Neurology | 1999

Experimental Investigation of Cerebral Contusion: Histopathological and Immunohistochemical Evaluation of Dynamic Cortical Deformation

David I. Shreiber; Allison C. Bain; Douglas T. Ross; Douglas H. Smith; Thomas A. Gennarelli; Tracy K. McIntosh; David F. Meaney

We used a new approach, termed dynamic cortical deformation (DCD), to study the neuronal, vascular, and glial responses that occur in focal cerebral contusions. DCD produces experimental contusion by rapidly deforming the cerebral cortex with a transient, nonablative vacuum pulse of short duration (25 milliseconds) to mimic the circumstances of traumatic injury. A neuropathological evaluation was performed on brain tissue from adult rats sacrificed 3 days following induction of either moderate (4 psi, n = 6) or high (8 psi, n = 6) severity DCD. In all animals, DCD produced focal hemorrhagic lesions at the vacuum site without overt damage to other regions. Examination of histological sections showed localized gross tissue and neuronal loss in the cortex at the injury site, with the volume of cell loss dependent upon the mechanical loading (p < 0.001). Axonal pathology shown with neurofilament immunostaining (SMI-31 and SMI-32) was observed in the subcortical white matter inferior to the injury site and in the ipsilateral internal capsule. No axonal injury was observed in the contralateral hemisphere or in any remote regions. Glial fibrillary acidic protein (GFAP) immunostaining revealed widespread reactive astrocytosis surrounding the necrotic region in the ipsilateral cortex. This analysis confirms that rapid mechanical deformation of the cortex induces focal contusions in the absence of primary damage to remote areas 3 days following injury. Although it is suggested that massive release of neurotoxic substances from a contusion may cause damage throughout the brain, these data emphasize the importance of combined injury mechanisms, e.g. mechanical distortion and excitatory amino acid mediated damage, that underlie the complex pathology patterns observed in traumatic brain injury.


Biomechanics and Modeling in Mechanobiology | 2009

Probing the influence of myelin and glia on the tensile properties of the spinal cord

David I. Shreiber; Hailing Hao; Ragi Elias

Although glia have been historically classified as the structurally supporting cells of the central nervous system, their role in tissue mechanics is still largely unstudied. The influence of myelin and glia on the mechanical properties of spinal cord tissue was examined by testing embryonic day 18 chick embryo spinal cords in uniaxial tension following disruption of the glial matrix using either ethidium bromide (EB) or an antibody against galactocerebroside (αGalC) in the presence of complement. Demyelination was confirmed by myelin basic protein immunoreactivity and quantified using osmium tetroxide staining. A substantial loss of astrocytes and oligodendrocytes concurrent with demyelination was observed following EB injection but not αGalC injection. No morphological changes were observed following injection of saline or IgG with complement as controls for EB and αGalC. Demyelinated spinal cords demonstrated significantly lower stiffness and ultimate tensile stress than myelinated spinal cords. No significant differences were observed in the tensile response between the two demyelinating protocols. The results demonstrate that the glial matrix provides significant mechanical support to the spinal cord, and suggests that myelin and cellular coupling of axons via the glial matrix in large part dictates the tensile response of the tissue.


Journal of Biomechanical Engineering-transactions of The Asme | 2003

Modeling of Microstructural Kinematics During Simple Elongation of Central Nervous System Tissue

Allison C. Bain; David I. Shreiber; David F. Meaney

Damage to axons and glial cells in the central nervous system (CNS) white matter is a nearly universal feature of traumatic brain injury, yet it is not clear how the tissue mechanical deformations are transferred to the cellular components of the CNS. Defining how cellular deformations relate to the applied tissue deformation field can both highlight cellular populations at risk for mechanical injury, and define the fraction of cells in a specific population that will exhibit damage. In this investigation, microstructurally based models of CNS white matter were developed and tested against measured transformations of the CNS tissue microstructure under simple elongation. Results show that axons in the unstretched optic nerves were significantly wavy or undulated, where the measured axonal path length was greater than the end-to-end distance of the axon. The average undulation parameter--defined as the true axonal length divided by the end-to-end length--was 1.13. In stretched nerves, mean axonal undulations decreased with increasing applied stretch ratio (lambda)--the mean undulation values decreased to 1.06 at lambda = 1.06, 1.04 at lambda = 1.12, and 1.02 at lambda = 1.25. A model describing the gradual coupling, or tethering, of the axons to the surrounding glial cells best fit the experimental data. These modeling efforts indicate the fraction of the axonal and glial populations experiencing deformation increases with applied elongation, consistent with the observation that both axonal and glial cell injury increases at higher levels of white matter injury. Ultimately, these results can be used in conjunction with computational simulations of traumatic brain injury to aid in establishing the relative risk of cellular structures in the CNS white matter to mechanical injury.


Journal of Neurotrauma | 2011

Microfluidic Generation of Haptotactic Gradients through 3D Collagen Gels for Enhanced Neurite Growth

Harini G. Sundararaghavan; Shirley N. Masand; David I. Shreiber

We adapted a microfluidic system used previously to generate durotactic gradients of stiffness in a 3D collagen gel, to produce haptotactic gradients of adhesive ligands through the collagen gel. Oligopeptide sequences that included bioactive peptide sequences from laminin, YIGSR, or IKVAV, were grafted separately onto type I collagen using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Solutions of peptide-grafted collagen and untreated collagen were then used as source and sink input solutions, respectively, in an H-shaped microfluidic network fabricated using traditional soft lithography. One-dimensional gradients of the peptide-grafted collagen solution were generated in the channel that connected the source and sink channels, and these gradients became immobilized upon self-assembly of the collagen into a 3D fibrillar gel. The slope and average concentration of the gradients were adjusted by changing the concentration of the source solutions and by changing the length of the cross-channel. A separate, underlying channel in the microfluidic construct allowed the introduction of a chick embryo dorsal root ganglion into the network. Neurites from these explants grew significantly longer up steep gradients of YIGSR, but shallow gradients of IKVAV in comparison to untreated collagen controls. When these two gradients were presented in combination, the bias in growth acceleration was the largest and most consistent. No differences were observed in the number of neurites choosing to grow up or down the gradients in any condition. These results suggest that the incorporation of distinct gradients of multiple bioactive ligands can improve directional acceleration of regenerating axons.


Tissue Engineering Part A | 2011

Positively and Negatively Modulating Cell Adhesion to Type I Collagen Via Peptide Grafting

Gary A. Monteiro; Anthony V. Fernandes; Harini G. Sundararaghavan; David I. Shreiber

The biophysical interactions between cells and type I collagen are controlled by the level of cell adhesion, which is dictated primarily by the density of ligands on collagen and the density of integrin receptors on cells. The native adhesivity of collagen was modulated by covalently grafting glycine-arginine-glycine-aspartic acid-serine (GRGDS), which includes the bioactive RGD sequence, or glycine-arginine-aspartic acid-glycine-serine (GRDGS), which includes the scrambled RDG sequence, to collagen with the hetero-bifunctional coupling agent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The peptide-grafted collagen self-assembled into a fibrillar gel with negligible changes in gel structure and rheology. Rat dermal fibroblasts (RDFs) and human smooth muscle cells demonstrated increased levels of adhesion on gels prepared from RGD-grafted collagen, and decreased levels of adhesion on RDG-grafted collagen. Both cell types demonstrated an increased ability to compact free-floating RGD-grafted collagen gels, and an impaired ability to compact RDG-grafted gels. RDF migration on and within collagen was increased with RDG-grafted collagen and decreased with RGD-grafted collagen, and dose-response experiments indicated a biphasic response of RDF migration to adhesion. Smooth muscle cells demonstrated similar, though not statistically significant, trends. The ability to both positively and negatively modulate cell adhesion to collagen increases the versatility of this natural biomaterial for regenerative therapies.

Collaboration


Dive into the David I. Shreiber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge