Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Ashline is active.

Publication


Featured researches published by David J. Ashline.


Science | 2008

Recapitulation of IVIG Anti-Inflammatory Activity with a Recombinant IgG Fc

Robert M. Anthony; Falk Nimmerjahn; David J. Ashline; Vernon N. Reinhold; James C. Paulson; Jeffrey V. Ravetch

It is well established that high doses of monomeric immunoglobulin G (IgG) purified from pooled human plasma [intravenous immunoglobulin (IVIG)] confer anti-inflammatory activity in a variety of autoimmune settings. However, exactly how those effects are mediated is not clear because of the heterogeneity of IVIG. Recent studies have demonstrated that the anti-inflammatory activity of IgG is completely dependent on sialylation of the N-linked glycan of the IgG Fc fragment. Here we determine the precise glycan requirements for this anti-inflammatory activity, allowing us to engineer an appropriate IgG1 Fc fragment, and thus generate a fully recombinant, sialylated IgG1 Fc with greatly enhanced potency. This therapeutic molecule precisely defines the biologically active component of IVIG and helps guide development of an IVIG replacement with improved activity and availability.


Journal of the American Society for Mass Spectrometry | 2009

The High Mannose Glycans from Bovine Ribonuclease B Isomer Characterization by Ion Trap MS

Justin M. Prien; David J. Ashline; Anthony J. Lapadula; Hailong Zhang; Vernon N. Reinhold

Thirteen high mannose isomers have been structurally characterized within three glycomers, Man5GlcNAc2, Man7GlcNAc2, and Man8GlcNAc2 released from bovine ribonuclease B, six previously unreported. The study was carried out with a single ion trap instrument involving no chromatography. Three previously characterized isomers from Man7 and Man8 (three each) have been identified plus one unreported Man7 isomer. Incomplete α-glucosidase activity on the Man6 and Man7 glycoproteins appears to account for two additional isomeric structures. The preeminence of ion traps for detail analysis was further demonstrated by resolving three new isomers within the Man5 glycomer summing to the six previously unreported structures in this glycoprotein. All reported structures represent a distribution of Golgi processing remnants that fall within the Man9GlcNAc2 footprint. Topologies were defined by ion compositions along a disassembly pathway while linkage and branching were aided by spectral identity in a small oligomer fragment library. Isomers from this glycoprotein appear to represent a distribution of Golgi processing remnants, and an alphanumeric classification scheme has been devised to identify all products. Although numerous analytical strategies have been introduced to identify selected components of structure, it has been the continued focus of this and previous reports to only build upon protocols that can be integrated into a high throughput strategy consistent with automation. Duplication of these and results from comparable standards could bring an important analytical focus to carbohydrate sequencing that is greatly lacking.


Molecular & Cellular Proteomics | 2014

Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses

Ying Yu; Yi Lasanajak; Xuezheng Song; Liya Hu; Sasirekha Ramani; Megan L. Mickum; David J. Ashline; B. V. Venkataram Prasad; Mary K. Estes; Vernon N. Reinhold; Richard D. Cummings; David F. Smith

Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM). To investigate the potential role of HMGs as decoy receptors for rotavirus (RV), a leading cause of severe gastroenteritis in children, we interrogated the HMG SGM with recombinant forms of VP8* domains of the RV outer capsid spike protein VP4 from human neonatal strains N155(G10P[11]) and RV3(G3P[6]) and a bovine strain, B223(G10P[11]). Glycans that were bound by RV attachment proteins were selected for detailed structural analyses using metadata-assisted glycan sequencing, which compiles data on each glycan based on its binding by antibodies and lectins before and after exo- and endo-glycosidase digestion of the SGM, coupled with independent MSn analyses. These complementary structural approaches resulted in the identification of 32 glycans based on RV VP8* binding, many of which are novel HMGs, whose detailed structural assignments by MSn are described in a companion report. Although sialic acid has been thought to be important as a surface receptor for RVs, our studies indicated that sialic acid is not required for binding of glycans to individual VP8* domains. Remarkably, each VP8* recognized specific glycan determinants within a unique subset of related glycan structures where specificity differences arise from subtle differences in glycan structures.


Cancer Research | 2008

Inhibition of the sodium/potassium ATPase impairs N-glycan expression and function

Reza Beheshti Zavareh; Ken S. Lau; Rose Hurren; Alessandro Datti; David J. Ashline; Marcela Gronda; Pam Cheung; Craig D. Simpson; Wei Liu; Amanda R. Wasylishen; Paul C. Boutros; Hui Shi; Amudha Vengopal; Igor Jurisica; Linda Z. Penn; Vern Reinhold; Shereen Ezzat; Jeff Wrana; David R. Rose; Harry Schachter; James W. Dennis; Aaron D. Schimmer

Aberrant N-linked glycans promote the malignant potential of cells by enhancing the epithelial-to-mesenchymal transition and the invasive phenotype. To identify small molecule inhibitors of N-glycan biosynthesis, we developed a chemical screen based on the ability of the tetravalent plant lectin L-phytohemagglutinin (L-PHA) to bind and crosslink surface glycoproteins with beta1,6GlcNAc-branched complex type N-glycans and thereby induce agglutination and cell death. In this screen, Jurkat cells were treated with a library of off-patent chemicals (n = 1,280) to identify molecules that blocked L-PHA-induced death. The most potent hit from this screen was the cardiac glycoside (CG) dihydroouabain. In secondary assays, a panel of CGs was tested for their effects on L-PHA-induced agglutination and cell death. All of the CGs tested inhibited L-PHA-induced death in Jurkat cells, and the most potent CG tested was digoxin with an EC(50) of 60 +/- 20 nmol/L. Digoxin also increased the fraction of some concanavalin A-binding N-glycans. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, digoxin specifically increased GlcNAc(1)Man(3)GlcNAc(2)Fuc(1) and GlcNAc(2)Man(3)GlcNAc(2)Fuc(1) oligosaccharides demonstrating an impairment of the N-glycan pathway. Consistent with this effect on the N-glycan pathway, digoxin inhibited N-glycosylation-mediated processes of tumor cell migration and invasion. Furthermore, digoxin prevented distant tumor formation in two mouse models of metastatic prostate cancer. Thus, taken together, our high throughput screen identified CGs as modifiers of the N-glycan pathway. These molecules can be used as tools to better understand the role of N-glycans in normal and malignant cells. Moreover, these results may partly explain the anticancer effect of CGs in cardiovascular patients.


Glycobiology | 2008

Differentiating N-linked glycan structural isomers in metastatic and nonmetastatic tumor cells using sequential mass spectrometry

Justin M. Prien; Leanne C. Huysentruyt; David J. Ashline; Anthony J. Lapadula; Thomas N. Seyfried; Vernon N. Reinhold

In an effort to understand the role of molecular glycosylation in cancer a murine model has been used to characterize and fingerprint malignancies in established cell lines that manifest all the hallmarks of metastatic disease: spontaneous development, local invasion, intravasation, immune system survival, extravasation, and secondary tumor formation involving liver, kidney, spleen, lung, and brain. Using astrocyte cell controls, we compared N-linked glycosylation from a nonmetastatic brain tumor cell line and two different metastatic brain tumor cells. Selected ions in each profile were disassembled by ion trap mass spectrometry (MS(n)) which exhibited multiple structural differences between each tissue. These unique structures were identified within isomeric compositions as pendant nonreducing termini of di- and trisaccharide fragments, probably transparent to a tandem MS approach but distinctively not to sequential ion trap MS(n) detection.


Molecular & Cellular Proteomics | 2013

Toward a Platform for Comprehensive Glycan Sequencing

Vernon N. Reinhold; Hailong Zhang; Andrew J. Hanneman; David J. Ashline

From a series of recently published reports, an analytical platform has been proposed for a quantitative and qualitative measure of N- and O-glycosylation, complete with peptide-glycan connectivity and detailed structural understanding. As distant as this may appear, a best methods approach will appear that must move us beyond the cartoon stage of structural understanding. Thus, with this unifying goal in mind, we summarize a series of individually promising first phase protocols of sample preparation (release, purification, and quantification) that remain congruent with a concluding phase (methylation and MSn) for documented structural detail. Sequential enzymatic N-glycan and chemical O-glycan release from glycopeptides with intervening solid phase extraction and derivatization will provide for a comparative quantification measure of glycosylation. The O-glycan release will be nonreductive and coupled with Michael addition to a pyrazolone analog (1-phenyl-3-methyl-5-pyrazolone) with both the peptide and glycan labeled. The product glycans are stable to methylation and appropriate for sequential disassembly (MSn). An application using human serum and cancer samples has been detailed characterizing sLex and comparable valence epitopes. This integrated platform will provide opportunities at variable points to contrast, share, and advance alternative protocols in a collaborative effort that is greatly needed. This integrated platform provides end point opportunities to confirm structural details compiled from synthetic standards and well characterized biologics by MSn.


Molecular & Cellular Proteomics | 2014

Structural Characterization by Multistage Mass Spectrometry (MSn) of Human Milk Glycans Recognized by Human Rotaviruses

David J. Ashline; Ying Yu; Yi Lasanajak; Xuezheng Song; Liya Hu; Sasirekha Ramani; Prasad; Mary K. Estes; Richard D. Cummings; David F. Smith; Vernon N. Reinhold

We have shown that recombinant forms of VP8* domains of the human rotavirus outer capsid spike protein VP4 from human neonatal strains (N155(G10P[11]) and RV3(G3P[6]) and a bovine strain (B223) recognize unique glycans within the repertoire of human milk glycans. The accompanying study by Yu et al.2, describes a human milk glycan shotgun glycan microarray that led to the identification of 32 specific glycans in the human milk tagged glycan library that were recognized by these human rotaviruses. These microarray analyses also provided a variety of metadata about the recognized glycan structures compiled from anti-glycan antibody and lectin binding before and after specific glycosidase digestions, along with compositional information from mass analysis by matrix-assisted laser desorption ionization-mass spectrometry. To deduce glycan sequence and utilize information predicted by analyses of metadata from each glycan, 28 of the glycan targets were retrieved from the tagged glycan library for detailed sequencing using sequential disassembly of glycans by ion-trap mass spectrometry. Our aim is to obtain a deeper structural understanding of these key glycans using an orthogonal approach for structural confirmation in a single ion trap mass spectrometer. This sequential ion disassembly strategy details the complexities of linkage and branching in multiple compositions, several of which contained isomeric mixtures including several novel structures. The application of this approach exploits both library matching with standard materials and de novo approaches. This combination together with the metadata generated from lectin and antibody-binding data before and after glycosidase digestions provide a heretofore-unavailable level of analytical detail to glycan structure analysis. The results of these studies showed that, among the 28 glycan targets analyzed, 27 unique structures were identified, and 23 of the human milk glycans recognized by human rotaviruses represent novel structures not previously described as glycans in human milk. The functional glycomics analysis of human milk glycans provides significant insight into the repertoire of glycans comprising the human milk metaglycome.


Journal of the American Society for Mass Spectrometry | 2014

Structural Documentation of Glycan Epitopes: Sequential Mass Spectrometry and Spectral Matching

David J. Ashline; Andrew J. Hanneman; Hailong Zhang; Vernon N. Reinhold

AbstractDocumenting mass spectral data is a fundamental aspect of accepted protocols. In this report, we contrast MSn sequential disassembly spectra obtained from natural and synthetic glycan epitopes. The epitopes considered are clusters found on conjugate termini of lipids and N- and O-glycans of proteins. The latter are most frequently pendant through a CID-labile HexNAc glycosidic linkage. The synthetic samples were supplied by collaborating colleagues and commercial sources and usually possessed a readily released reducing-end linker, a by-product of synthesis. All samples were comparably methylated, extracted, and MSn disassembled to compare their linkage and branching spectral details. Both sample types provide B-ion type fragments early in a disassembly pathway and their compositions are a suggestion of structure. Further steps of disassembly are necessary to confirm the details of linkage and branching. Included in this study were various Lewis and H antigens, 3- and 6-linked sialyl-lactosamine, NeuAc-2,8-NeuAc dimer, and Galα1,3Gal. Sample infusion provided high quality spectral data whereas disassembly to small fragments generates reproducible high signal/noise spectra for spectral matching. All samples were analyzed as sodium adducted positive ions. This study includes comparability statistics and evaluations on several mass spectrometers. Figureᅟ


Journal of Biological Chemistry | 2014

Platelets support extracellular sialylation by supplying the sugar donor substrate

Melissa M. Lee; Mehrab Nasirikenari; Charles T. Manhardt; David J. Ashline; Andrew J. Hanneman; Vernon N. Reinhold; Joseph T.Y. Lau

Background: ST6Gal-1 sialyltransferase is a prominent circulatory glycosyltransferase whose function remained in question because an extracellular source of sugar donor substrate was unknown. Results: Extracellular ST6Gal-1 catalysis uses platelet-supplied sugar donors. Conclusion: Activated platelets release donor substrates to functionally drive extracellular glycosylation by soluble ST6Gal-1. Significance: Remodeling by extracellular glycosyltransferases may be an important mechanism to generate physiologically important glycans. Sizable pools of freely circulating glycosyltransferases are in blood, but understanding their physiologic contributions has been hampered because functional sources of sugar donor substrates needed to drive extracellular glycosylation have not been identified. The blood-borne ST6Gal-1 produced and secreted by the liver is the most noted among the circulatory glycosyltransferases, and decorates marrow hematopoietic progenitor cells with α2,6-linked sialic acids and restricts blood cell production. Platelets, upon activation, secrete a plethora of bioactive molecules including pro- and anti-inflammatory mediators. Cargos of sugar donor substrates for glycosyltransferase activity have also been reported in platelets. Here, we implemented a cell-based system to interrogate platelets for their ability to deliver effectively the sugar donor substrate for extracellular ST6Gal-1 to function. We report that thrombin-activated platelets, at physiologic concentration and pH, can efficiently and effectively substitute for CMP-sialic acid in extracellular ST6Gal-1-mediated sialylation of target cell surfaces. Activated platelets can also supply the sialic acid donor to sialylate the synthetic acceptor, Gal(β1,4)GlcNAcα-o-benzyl, with the product Sia(α2,6)Gal(β1,4)GlcNAcα-o-benzyl structurally confirmed by LC/MS. Platelet-secreted donor substrate was recovered in the 100,000 × g sediment, strongly suggesting the association of this otherwise soluble substrate, putatively CMP-sialic acid, within platelet microparticles. Sequestration within microparticles may facilitate delivery of glycosylation substrate at effective dosages to sites of extracellular glycosylation while minimizing excessive dilution.


Glycobiology | 2010

Mammalian cell ganglioside-binding specificities of E. coli enterotoxins LT-IIb and variant LT-IIb(T13I).

Charles S. Berenson; Hesham F. Nawar; Herbert C. Yohe; Sherry A. Castle; David J. Ashline; Vernon N. Reinhold; George Hajishengallis; Terry D. Connell

LT-IIb, a type II heat-labile enterotoxin of Escherichia coli, is a potent immunologic adjuvant with high affinity binding for ganglioside GD1a. Earlier study suggested that LT-IIb bound preferentially to the terminal sugar sequence NeuAcalpha2-3Galbeta1-3GalNAc. However, studies in our laboratory suggested a less restrictive binding epitope. LT-IIb(T13I), an LT-IIb variant, engineered by a single isoleucine-threonine substitution, retains biological activity, but with less robust inflammatory effects. We theorized that LT-IIb has a less restrictive binding epitope than previously proposed and that immunologic differences between LT-IIb and LT-IIb (T13I) correlate with subtle ganglioside binding differences. Ganglioside binding epitopes, determined by affinity overlay immunoblotting and enzymatic degradation of ganglioside components of RAW264.7 macrophages, indicated that LT-IIb bound to a broader array of gangliosides than previously recognized. Each possessed NeuAcalpha2-3Galbeta1-3GalNAc, although not necessarily as a terminal sequence. Rather, each had a requisite terminal or penultimate single sialic acid and binding was independent of ceramide composition. RAW264.7 enterotoxin-binding and non-binding ganglioside epitopes were definitively identified as GD1a and GM1a, respectively, by enzymatic degradation and mass spectroscopy. Affinity overlay immunoblots, constructed to the diverse array of known ganglioside structures of murine peritoneal macrophages, established that LT-IIb bound NeuAc- and NeuGc-gangliosides with nearly equal affinity. However, LT-IIb(T13I) exhibited enhanced affinity for NeuGc-gangliosides and more restrictive binding. These studies further elucidate the binding epitope for LT-IIb and suggest that the diminished inflammatory activity of LT-IIb(T13I) is mediated by a subtle shift in ganglioside binding. These studies underscore the high degree of specificity required for ganglioside-protein interactions.

Collaboration


Dive into the David J. Ashline's collaboration.

Top Co-Authors

Avatar

Vernon N. Reinhold

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Hailong Zhang

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Hanneman

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph T.Y. Lau

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Justin M. Prien

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liya Hu

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge