Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. B. Lloyd is active.

Publication


Featured researches published by David J. B. Lloyd.


Siam Journal on Mathematical Analysis | 2009

Snakes, Ladders, and Isolas of Localized Patterns

Margaret Beck; Juergen Knobloch; David J. B. Lloyd; Bjoern Sandstede; Thomas Wagenknecht

Stable localized roll structures have been observed in many physical problems and model equations, notably in the one-dimensional (1D) Swift–Hohenberg equation. Reflection-symmetric localized rolls are often found to lie on two “snaking” solution branches so that the spatial width of the localized rolls increases when moving along each branch. Recent numerical results by Burke and Knobloch indicate that the two branches are connected by infinitely many “ladder” branches of asymmetric localized rolls. In this paper, these phenomena are investigated analytically. It is shown that both snaking of symmetric pulses and the ladder structure of asymmetric states can be predicted completely from the bifurcation structure of fronts that connect the trivial state to rolls. It is also shown that isolas of asymmetric states may exist, and it is argued that the results presented here apply to 2D stationary states that are localized in one spatial direction.


Siam Journal on Applied Dynamical Systems | 2008

Localized hexagon patterns of the planar Swift-Hohenberg equation

David J. B. Lloyd; Björn Sandstede; Daniele Avitabile; Alan R. Champneys

We investigate stationary spatially localized hexagon patterns of the two-dimensional (2D) Swift–Hohenberg equation in the parameter region where the trivial state and regular hexagon patterns are both stable. Using numerical continuation techniques, we trace out the existence regions of fully localized hexagon patches and of planar pulses which consist of a strip filled with hexagons that is embedded in the trivial state. We find that these patterns exhibit snaking: for each parameter value in the snaking region, an infinite number of patterns exist that are connected in parameter space and whose width increases without bound. Our computations also indicate a relation between the limits of the snaking regions of planar hexagon pulses with different orientations and of the fully localized hexagon patches. To investigate which hexagons among the one-parameter family of hexagons are selected in a hexagon pulse or front, we derive a conserved quantity of the spatial dynamical system that describes planar pat...


Siam Journal on Applied Dynamical Systems | 2010

To Snake or Not to Snake in the Planar Swift-Hohenberg Equation ∗

Daniele Avitabile; David J. B. Lloyd; John Burke; Edgar Knobloch; Björn Sandstede

We investigate the bifurcation structure of stationary localized patterns of the two-dimensional Swift–Hohenberg equation on an infinitely long cylinder and on the plane. On cylinders, we find localized roll, square, and stripe patches that exhibit snaking and nonsnaking behavior on the same bifurcation branch. Some of these patterns snake between four saddle-node limits; in this case, recent analytical results predict the existence of a rich bifurcation structure to asymmetric solutions, and we trace out these branches and the PDE spectra along these branches. On the plane, we study the bifurcation structure of fully localized roll structures, which are often referred to as worms. In all the above cases, we use geometric ideas and spatial-dynamics techniques to explain the phenomena that we encounter.


SIAM Journal on Scientific Computing | 2014

Continuation of Localized Coherent Structures in Nonlocal Neural Field Equations

James Rankin; Daniele Avitabile; Javier Baladron; Grégory Faye; David J. B. Lloyd

We study localized activity patterns in neural field equations posed on the Euclidean plane; such models are commonly used to describe the coarse-grained activity of large ensembles of cortical neurons in a spatially continuous way. We employ matrix-free Newton--Krylov solvers and perform numerical continuation of localized patterns directly on the integral form of the equation. This opens up the possibility of studying systems whose synaptic kernel does not lead to an equivalent PDE formulation. We present a numerical bifurcation study of localized states and show that the proposed models support patterns of activity with varying spatial extent through the mechanism of homoclinic snaking. The regular organization of these patterns is due to spatial interactions at a specific scale associated with the separation of excitation peaks in the chosen connectivity function. The results presented form a basis for the general study of localized cortical activity with inputs and, more specifically, for the investi...


Applied Soft Computing | 2014

Linear and sigmoidal fuzzy cognitive maps: An analysis of fixed points

Christopher J.K. Knight; David J. B. Lloyd; Alexandra S. Penn

Fuzzy cognitive mapping is commonly used as a participatory modelling technique whereby stakeholders create a semi-quantitative model of a system of interest. This model is often turned into an iterative map, which should (ideally) have a unique stable fixed point. Several methods of doing this have been used in the literature but little attention has been paid to differences in output such different approaches produce, or whether there is indeed a unique stable fixed point. In this paper, we seek to highlight and address some of these issues. In particular we state conditions under which the ordering of the variables at stable fixed points of the linear fuzzy cognitive map (iterated to) is unique. Also, we state a condition (and an explicit bound on a parameter) under which a sigmoidal fuzzy cognitive map is guaranteed to have a unique fixed point, which is stable. These generic results suggest ways to refine the methodology of fuzzy cognitive mapping. We highlight how they were used in an ongoing case study of the shift towards a bio-based economy in the Humber region of the UK.


PLOS ONE | 2013

Participatory development and analysis of a fuzzy cognitive map of the establishment of a bio-based economy in the Humber region.

Alexandra S. Penn; Christopher J.K. Knight; David J. B. Lloyd; Daniele Avitabile; Kasper Kok; Frank Schiller; Amy Woodward; Angela Druckman; Lauren Basson

Fuzzy Cognitive Mapping (FCM) is a widely used participatory modelling methodology in which stakeholders collaboratively develop a ‘cognitive map’ (a weighted, directed graph), representing the perceived causal structure of their system. This can be directly transformed by a workshop facilitator into simple mathematical models to be interrogated by participants by the end of the session. Such simple models provide thinking tools which can be used for discussion and exploration of complex issues, as well as sense checking the implications of suggested causal links. They increase stakeholder motivation and understanding of whole systems approaches, but cannot be separated from an intersubjective participatory context. Standard FCM methodologies make simplifying assumptions, which may strongly influence results, presenting particular challenges and opportunities. We report on a participatory process, involving local companies and organisations, focussing on the development of a bio-based economy in the Humber region. The initial cognitive map generated consisted of factors considered key for the development of the regional bio-based economy and their directional, weighted, causal interconnections. A verification and scenario generation procedure, to check the structure of the map and suggest modifications, was carried out with a second session. Participants agreed on updates to the original map and described two alternate potential causal structures. In a novel analysis all map structures were tested using two standard methodologies usually used independently: linear and sigmoidal FCMs, demonstrating some significantly different results alongside some broad similarities. We suggest a development of FCM methodology involving a sensitivity analysis with different mappings and discuss the use of this technique in the context of our case study. Using the results and analysis of our process, we discuss the limitations and benefits of the FCM methodology in this case and in general. We conclude by proposing an extended FCM methodology, including multiple functional mappings within one participant-constructed graph.


SIAM Journal on Scientific Computing | 2005

Efficient Numerical Continuation and Stability Analysis of Spatiotemporal Quadratic Optical Solitons

David J. B. Lloyd; Alan R. Champneys

A numerical method is set out which efficiently computes stationary (z-independent) two- and three-dimensional spatiotemporal solitons in second-harmonic-generating media. The method relies on a Chebyshev decomposition with an infinite mapping, bunching the collocation points near the soliton core. Known results for the type-I interaction are extended and a stability boundary is found by two-parameter continuation as defined by the Vakhitov--Kolokolov criteria. The validity of this criterion is demonstrated in (2+1) dimensions by simulation and direct calculation of the linear spectrum. The method has wider applicability for general soliton-bearing equations in (2+1) and (3+1) dimensions.


Siam Journal on Applied Dynamical Systems | 2017

Continuation and Bifurcation of Grain Boundaries in the Swift--Hohenberg Equation

David J. B. Lloyd; Arnd Scheel

We study grain boundaries between striped phases in the prototypical Swift-Hohenberg equation. We propose an analytical and numerical far-field-core decomposition that allows us to study existence and bifurcations of grain boundaries analytically and numerically using continuation techniques. This decomposition overcomes problems with computing grain boundaries in a large doubly periodic box with phase conditions. Using the spatially conserved quantities of the time-independent Swift-Hohenberg equation, we show that symmetric grain boundaries must select the marginally zig-zag stable stripes. We find that as the angle between the stripes is decreased, the symmetric grain boundary undergoes a parity-breaking pitchfork bifurcation where dislocations at the grain boundary split into disclination pairs. A plethora of asymmetric grain boundaries (with different angles of the far-field stripes either side of the boundary) is found and investigated. The energy of the grain boundaries is then mapped out. We find that when the angle between the stripes is greater than a critical angle, the symmetric grain boundary is energetically preferred while when the angle is less than the critical angle, the grain boundaries where stripes on one side are parallel to the interface are energetically preferred. Finally, we propose a classification of grain boundaries that allows us to predict various non-standard asymmetric grain boundaries.


PLOS ONE | 2012

Modelling and Detecting Tumour Oxygenation Levels

Anne C. Skeldon; Gary Chaffey; David J. B. Lloyd; Vineet Mohan; D.A. Bradley; A. Nisbet

Tumours that are low in oxygen (hypoxic) tend to be more aggressive and respond less well to treatment. Knowing the spatial distribution of oxygen within a tumour could therefore play an important role in treatment planning, enabling treatment to be targeted in such a way that higher doses of radiation are given to the more radioresistant tissue. Mapping the spatial distribution of oxygen in vivo is difficult. Radioactive tracers that are sensitive to different levels of oxygen are under development and in the early stages of clinical use. The concentration of these tracer chemicals can be detected via positron emission tomography resulting in a time dependent concentration profile known as a tissue activity curve (TAC). Pharmaco-kinetic models have then been used to deduce oxygen concentration from TACs. Some such models have included the fact that the spatial distribution of oxygen is often highly inhomogeneous and some have not. We show that the oxygen distribution has little impact on the form of a TAC; it is only the mean oxygen concentration that matters. This has significant consequences both in terms of the computational power needed, and in the amount of information that can be deduced from TACs.


Nonlinearity | 2013

Localized radial bumps of a neural field equation on the Euclidean plane and the Poincaré disc

Grégory Faye; James Rankin; David J. B. Lloyd

We analyse radially symmetric localized bump solutions of an integro-differential neural field equation posed in Euclidean and hyperbolic geometry. The connectivity function and the nonlinear firing rate function are chosen such that radial spatial dynamics can be considered. Using integral transforms, we derive a partial differential equation for the neural field equation in both geometries and then prove the existence of small amplitude radially symmetric spots bifurcating from the trivial state. Numerical continuation is then used to path follow the spots and their bifurcations away from onset in parameter space. It is found that the radial bumps in Euclidean geometry are linearly stable in a larger parameter region than bumps in the hyperbolic geometry. We also find and path follow localized structures that bifurcate from branches of radially symmetric solutions with D6-symmetry and D8-symmetry in the Euclidean and hyperbolic cases, respectively. Finally, we discuss the applications of our results in the context of neural field models of short term memory and edges and textures selectivity in a hypercolumn of the visual cortex.

Collaboration


Dive into the David J. B. Lloyd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Scott Bunch

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

A. Nisbet

Royal Surrey County Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge