David J. Bagnall
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David J. Bagnall.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Ben Trevaskis; David J. Bagnall; Marc H. Ellis; W. James Peacock; Elizabeth S. Dennis
By comparing expression levels of MADS box transcription factor genes between near-isogenic winter and spring lines of bread wheat, Triticum aestivum, we have identified WAP1 as the probable candidate for the Vrn-1 gene, the major locus controlling the vernalization flowering response in wheat. WAP1 is strongly expressed in spring wheats and moderately expressed in semispring wheats, but is not expressed in winter wheat plants that have not been exposed to vernalization treatment. Vernalization promotes flowering in winter wheats and strongly induces expression of WAP1. WAP1 is located on chromosome 5 in wheat and, by synteny with other cereal genomes, is likely to be collocated with Vrn-1. These results in hexaploid bread wheat cultivars extend the conclusion made by Yan et al. [Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. & Dubcovsky, J. (2003) Proc. Natl. Acad. Sci. USA 100, 6263–6268] in the diploid wheat progenitor Triticum monococcum that WAP1 (TmAP1) corresponds to the Vrn-1 gene. The barley homologue of WAP1, BM5, shows a similar pattern of expression to WAP1 and TmAP1. BM5 is not expressed in winter barleys that have not been vernalized, but as with WAP1, expression of BM5 is strongly induced by vernalization treatment. In spring barleys, the level of BM5 expression is determined by interactions between the Vrn-H1 locus and a second locus for spring habit, Vrn-H2. There is now evidence that AP1-like genes determine the time of flowering in a range of cereal and grass species.
Plant Physiology | 1995
David J. Bagnall; Rod W. King; Garry C. Whitelam; Margaret T. Boylan; Doris Wagner; Peter H. Quail
The long-day plant Arabidopsis thaliana (L.) Heynh. flowers early in response to brief end-of-day (EOD) exposures to far-red light (FR) following a fluorescent short day of 8 h. FR promotion of flowering was nullified by subsequent brief red light (R) EOD exposure, indicating phytochrome involvement. The EOD response to R or FR is a robust measure of phytochrome action. Along with their wild-type (WT) parents, mutants deficient in either phytochrome A or B responded similarly to the EOD treatments. Thus, neither phytochrome A nor B exclusively regulated flowering, although phytochrome B controlled hypocotyl elongation. Perhaps a third phytochrome species is important for the EOD responses of the mutants and/or their flowering is regulated by the amount of the FR-absorbing form of phytochrome, irrespective of the phytochrome species. Overexpression of phytochrome A or phytochrome B resulted in differing photoperiod and EOD responses among the genotypes. The day-neutral overexpressor of phytochrome A had an EOD response similar to all of the mutants and WTs, whereas R EOD exposure promoted flowering in the overexpressor of phytochrome B and FR EOD exposure inhibited this promotion. The comparisons between relative flowering times and leaf numbers at flowering of the overexpressors and their WTs were not consistent across photoperiods and light treatments, although both phytochromes A and B contributed to regulating flowering of the transgenic plants.
Current Opinion in Plant Biology | 2000
Candice C. Sheldon; E. J. Finnegan; D. T. Rouse; Million Tadege; David J. Bagnall; Christopher A. Helliwell; W. J. Peacock; Elizabeth S. Dennis
The process by which vernalization, the exposure of a germinating seed or a juvenile plant to a prolonged period of low temperature, promotes flowering in the adult plant has remained a mystery for many years. The recent isolation of one of the key genes involved in vernalization, FLOWERING LOCUS C, has now provided an insight into the molecular mechanism involved, including the role of DNA methylation.
Planta | 1996
David J. Bagnall; Rod W. King; Roger P. Hangarter
Loss of a blue-light photoreceptor in the hy4 mutants of Arabidopsis thaliana (L.) Heynh substantially delayed flowering (>100 d to flower vs. 40–50 d), especially with blue light exposure from lamps lacking much red (R) and/or far-red (FR) light. Red night breaks were promotory but flowering was still later for the hy4-101 mutant. However, with exposure to light from FR-rich lamps, flowering of all mutants was early and no different from the wild type. Thus, flowering of Arabidopsis involves a blue-light photoreceptor and other, often more effective photoreceptors. The latter may involve phytochrome photoresponses to R and FR, but with little or no phytochrome response to blue wavelengths.
Planta | 1988
David J. Bagnall; Rod W. King; Graham D. Farquhar
Arachis hypogaea L. is a tropical crop that is slow-growing at temperatures below 25°C. Unadapted CO2-assimilation rate (A) showed insufficient variation between 15 and 30°C in the short term (hours) to explain this marked reduction in growth. However, at longer periods (12 d), A was depressed as were growth rate and leafproduction rate. To examine the possible relationship between growth, A and sink demand plants were transferred from 30°C, which is near the optimum for growth, to a suboptimal temperature (19°C). In the first 2 d of cooling, A decreased by 50–70%, the stomata stayed open, and the intercellular CO2 concentration (ci) rose, i.e. the decrease in A of the cooled plants was the result of non-stomatal factors. Changes in dark respiration did not account for the decline in A.Clear evidence was obtained of sink control of A by independently manipulating the temperature of different leaves on the plant. Cooling (to 19°C) most of the plant (the sink) led to a 70% decline in A of the remaining leaves at 30°C after 3 d, whereas the converse treatments (30°C sink, 19°C source) resulted in small changes (17%). In plants at 19°C which were exposed to low CO2 concentration to prevent photosynthesis, A was not reduced when measured at normal CO2 concentrations, indicating that carbohydrate accumulation was responsible for the decline in A. Dry-matter build-up at suboptimal temperature was also consistent with end-product inhibition of photosynthesis.
PLOS ONE | 2011
Peter H. Thrall; Anna-Liisa Laine; Linda M. Broadhurst; David J. Bagnall; J. Brockwell
Background and Objectives Interactions between plants and beneficial soil organisms (e.g. rhizobial bacteria, mycorrhizal fungi) are models for investigating the ecological impacts of such associations in plant communities, and the evolution and maintenance of variation in mutualisms (e.g. host specificity and the level of benefits provided). With relatively few exceptions, variation in symbiotic effectiveness across wild host species is largely unexplored. Methods We evaluated these associations using representatives of several legume genera which commonly co-occur in natural ecosystems in south-eastern Australia and an extensive set of rhizobial strains isolated from these hosts. These strains had been previously assigned to specific phylotypes on the basis of molecular analyses. In the first of two inoculation experiments, the growth responses of each host species was evaluated with rhizobial strains isolated from that species. The second experiment assessed performance across genera and the extent of host specificity using a subset of these strains. Results While host growth responses to their own (sympatric) isolates varied considerably, rhizobial phylotype was a significant predictor of symbiotic performance, indicating that bacterial species designations on the basis of molecular markers have ecological importance. Hosts responded in qualitatively different ways to sympatric and allopatric strains of rhizobia, ranging from species with a clear preference for their own strains, to those that were broad generalists, through to species that grew significantly better with allopatric strains. Conclusion Theory has focused on trade-offs between the provision of benefits and symbiont competitive ability that might explain the persistence of less beneficial strains. However, differences in performance among co-occurring host species could also drive such patterns. Our results thus highlight the likely importance of plant community structure in maintaining variation in symbiotic effectiveness.
Functional Plant Biology | 2001
David J. Bagnall; Rod W. King
A number of phytochrome mutants have been examined for involvement in high irradiance (HIR) or red/far-red (R/FR) end-of-day (EOD) photoresponses during flowering of the long-day (LD) plant, Arabidopsis thaliana (L.) Heynh. A large component of phytochrome A (phyA) response is shown to involve an indirect effect via photosynthesis. When grown autotrophically in soil at a low irradiance (80 mol m–2 s–1), the phyA-211 mutant flowered extremely late compared with wild type and its leaf area was halved, both effects being reversed by increase in photosynthetic irradiance. Supplying sucrose via agar led to very early flowering with little indication of an additional direct phyA HIR. For light-stable phytochrome apoprotein mutants (phyB, phyD) or chromophore mutants (hy1, hy2), flowering was early and R/FR photoreversible EOD response was erased. Conversely, flowering was delayed in a transgenic line overexpressing the PHYB apoprotein. The FR EOD promotion of flowering via phyB was retained in darkness, brief night interruptions mimicking LD response. This novel finding emphasizes the importance of phyB-like phytochromes, with phyA acting indirectly. Whether phyB influences time measurement remains uncertain as we found no rhythmicity in this response to night interruptions. Overall, the role(s) of phytochromes in the regulation of flowering of Arabidopsis include EOD phyB-type response, a minor phyA photoperiodic response, and a large indirect phyA effect involving photosynthesis.
Proceedings of the National Academy of Sciences of the United States of America | 1993
Joanne Elizabeth Burn; David J. Bagnall; J. D. Metzger; Elizabeth S. Dennis; W. J. Peacock
Plant Physiology | 2001
Gregory F.W. Gocal; Candice C. Sheldon; Frank Gubler; Thomas Moritz; David J. Bagnall; Colleen P. MacMillan; Song Feng Li; Roger W. Parish; Elizabeth S. Dennis; Detlef Weigel; Rod W. King
Plant Journal | 2002
Dean Rouse; Candice C. Sheldon; David J. Bagnall; W. James Peacock; Elizabeth S. Dennis
Collaboration
Dive into the David J. Bagnall's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs