Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Baumler is active.

Publication


Featured researches published by David J. Baumler.


Applied and Environmental Microbiology | 2000

Contribution of dps to Acid Stress Tolerance and Oxidative Stress Tolerance in Escherichia coli O157:H7

Sang Ho Choi; David J. Baumler; Charles W. Kaspar

ABSTRACT An Escherichia coli O157:H7dps::nptI mutant (FRIK 47991) was generated, and its survival was compared to that of the parent in HCl (synthetic gastric fluid, pH 1.8) and hydrogen peroxide (15 mM) challenges. The survival of the mutant in log phase (5-h culture) was significantly impaired (4-log10-CFU/ml reduction) compared to that of the parent strain (ca. 1.0-log10-CFU/ml reduction) after a standard 3-h acid challenge. Early-stationary-phase cells (12-h culture) of the mutant decreased by ca. 4 log10CFU/ml while the parent strain decreased by approximately 2 log10 CFU/ml. No significant differences in the survival of late-stationary-phase cells (24-h culture) between the parent strain and the mutant were observed, although numbers of the parent strain declined less in the initial 1 h of acid challenge. FRIK 47991 was more sensitive to hydrogen peroxide challenge than was the parent strain, although survival improved in stationary phase. Complementation of the mutant with a functional dps gene restored acid and hydrogen peroxide tolerance to levels equal to or greater than those exhibited by the parent strain. These results demonstrate that decreases in survival were from the absence of Dps or a protein regulated by Dps. The results from this study establish that Dps contributes to acid tolerance in E. coli O157:H7 and confirm the importance of Dps in oxidative stress protection.


BMC Microbiology | 2008

Acid stress damage of DNA is prevented by Dps binding in Escherichia coli O157:H7

Kwang Cheol Jeong; Kai Foong Hung; David J. Baumler; Jeffrey J. Byrd; Charles W. Kaspar

BackgroundAcid tolerance in Escherichia coli O157:H7 contributes to persistence in its bovine host and is thought to promote passage through the gastric barrier of humans. Dps (DNA-binding protein in starved cells) mutants of E. coli have reduced acid tolerance when compared to the parent strain although the role of Dps in acid tolerance is unclear. This study investigated the mechanism by which Dps contributes to acid tolerance in E. coli O157:H7.ResultsThe results from this study showed that acid stress lead to damage of chromosomal DNA, which was accentuated in dps and recA mutants. The use of Bal31, which cleaves DNA at nicks and single-stranded regions, to analyze chromosomal DNA extracted from cells challenged at pH 2.0 provided in vivo evidence of acid damage to DNA. The DNA damage in a recA mutant further corroborated the hypothesis that acid stress leads to DNA strand breaks. Under in vitro assay conditions, Dps was shown to bind plasmid DNA directly and protect it from acid-induced strand breaks. Furthermore, the extraction of DNA from Dps-DNA complexes required a denaturing agent at low pH (2.2 and 3.6) but not at higher pH (>pH4.6). Low pH also restored the DNA-binding activity of heat-denatured Dps. Circular dichroism spectra revealed that at pH 3.6 and pH 2.2 Dps maintains or forms α-helices that are important for Dps-DNA complex formation.ConclusionResults from the present work showed that acid stress results in DNA damage that is more pronounced in dps and recA mutants. The contribution of RecA to acid tolerance indicated that DNA repair was important even when Dps was present. Dps protected DNA from acid damage by binding to DNA. Low pH appeared to strengthen the Dps-DNA association and the secondary structure of Dps retained or formed α-helices at low pH. Further investigation into the precise interplay between DNA protection and damage repair pathways during acid stress are underway to gain additional insight.


BMC Systems Biology | 2011

The evolution of metabolic networks of E. coli

David J. Baumler; Roman G Peplinski; Jennifer L. Reed; Jeremy D. Glasner; Nicole T. Perna

BackgroundDespite the availability of numerous complete genome sequences from E. coli strains, published genome-scale metabolic models exist only for two commensal E. coli strains. These models have proven useful for many applications, such as engineering strains for desired product formation, and we sought to explore how constructing and evaluating additional metabolic models for E. coli strains could enhance these efforts.ResultsWe used the genomic information from 16 E. coli strains to generate an E. coli pangenome metabolic network by evaluating their collective 76,990 ORFs. Each of these ORFs was assigned to one of 17,647 ortholog groups including ORFs associated with reactions in the most recent metabolic model for E. coli K-12. For orthologous groups that contain an ORF already represented in the MG1655 model, the gene to protein to reaction associations represented in this model could then be easily propagated to other E. coli strain models. All remaining orthologous groups were evaluated to see if new metabolic reactions could be added to generate a pangenome-scale metabolic model (iEco1712_pan). The pangenome model included reactions from a metabolic model update for E. coli K-12 MG1655 (iEco1339_MG1655) and enabled development of five additional strain-specific genome-scale metabolic models. These additional models include a second K-12 strain (iEco1335_W3110) and four pathogenic strains (two enterohemorrhagic E. coli O157:H7 and two uropathogens). When compared to the E. coli K-12 models, the metabolic models for the enterohemorrhagic (iEco1344_EDL933 and iEco1345_Sakai) and uropathogenic strains (iEco1288_CFT073 and iEco1301_UTI89) contained numerous lineage-specific gene and reaction differences. All six E. coli models were evaluated by comparing model predictions to carbon source utilization measurements under aerobic and anaerobic conditions, and to batch growth profiles in minimal media with 0.2% (w/v) glucose. An ancestral genome-scale metabolic model based on conserved ortholog groups in all 16 E. coli genomes was also constructed, reflecting the conserved ancestral core of E. coli metabolism (iEco1053_core). Comparative analysis of all six strain-specific E. coli models revealed that some of the pathogenic E. coli strains possess reactions in their metabolic networks enabling higher biomass yields on glucose. Finally the lineage-specific metabolic traits were compared to the ancestral core model predictions to derive new insight into the evolution of metabolism within this species.ConclusionOur findings demonstrate that a pangenome-scale metabolic model can be used to rapidly construct additional E. coli strain-specific models, and that quantitative models of different strains of E. coli can accurately predict strain-specific phenotypes. Such pangenome and strain-specific models can be further used to engineer metabolic phenotypes of interest, such as designing new industrial E. coli strains.


Applied and Environmental Microbiology | 2011

Reduction of Escherichia coli O157:H7 Shedding in Cattle by Addition of Chitosan Microparticles to Feed

Kwang Cheol Jeong; Min Young Kang; Jihun Kang; David J. Baumler; Charles W. Kaspar

ABSTRACT Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a significant human pathogen that resides in healthy cattle. It is thought that a reduction in the prevalence and numbers of EHEC in cattle will reduce the load of EHEC entering the food chain. To this end, an intervention strategy involving the addition of chitosan microparticles (CM) to feed in order to reduce the carriage of this pathogen in cattle was evaluated. Experiments with individual Holstein calves and a crossover study found that the addition of CM to feed decreased E. coli O157:H7 shedding. In the crossover study, CM resulted in statistically significant reductions in the numbers recovered from rectal swab samples (P < 0.05) and the duration of shedding (P < 0.05). The effects of feeding CM to calves differed, indicating that the optimal levels of CM may differ between animals or that other factors are involved in the interaction between CM and E. coli O157:H7. In vitro studies demonstrated that E. coli O157:H7 binds to CM, suggesting that the reduction in shedding may result at least in part from the binding of positively charged CM to negatively charged E. coli cells. Additional studies are needed to determine the impact of CM feeding on animal production, but the results from this study indicate that supplementing feed with CM reduces the shedding of E. coli O157:H7 in cattle.


Applied Biochemistry and Biotechnology | 2006

Enhancement of acid tolerance in Zymomonas mobilis by a proton-buffering peptide

David J. Baumler; Kai F. Hung; Jeffrey L. Bose; Boris Vykhodets; Chorng M. Cheng; Kwang Cheol Jeong; Charles W. Kaspar

A portion of the cbpA gene from Escherichia coli K-12 encoding a 24 amino acid proton-buffering peptide (Pbp) was cloned via the shuttle vector pJB99 into E. coli JM105 and subsequently into Zymomonas mobilis CP4. Expression of Pbp was confirmed in both JM105 and CP4 by HPLC. Z. mobilis CP4 carrying pJB99-2 (Pbp) exhibited increased acid tolerance (p<0.05) in acidified TSB (HCl [pH 3.0] or acetic acid [pH 3.5]), glycine-HCl buffer (pH 3.0), and sodium acetate-acetic acid buffer (pH 3.5) in comparison to the parent strain (CP4) and CP4 with pJB99 (control plasmid). Although the expression of Pbp influenced survival at a low pH, the minimum growth pH was unaffected. Growth of Z. mobilis in the presence of ampicillin also significantly increased acid tolerance by an unknown mechanism. Results from this study demonstrate that the production of a peptide with a high proportion of basic amino acids can contribute to protection from low pH and weak organic acids such as acetic acid.


BMC Microbiology | 2006

H-NS controls metabolism and stress tolerance in Escherichia coli O157:H7 that influence mouse passage

Irfan Erol; Kwang-Cheol Jeong; David J. Baumler; Boris Vykhodets; Sang Ho Choi; Charles W. Kaspar

BackgroundH-NS is a DNA-binding protein with central roles in gene regulation and nucleoid structuring in Escherichia coli. There are over 60 genes that are influenced by H-NS many of which are involved in metabolism. To determine the significance of H-NS-regulated genes in metabolism and stress tolerance, an hns mutant of E. coli O157:H7 was generated (hns::nptI, FRIK47001P) and its growth, metabolism, and gastrointestinal passage compared to the parent strain (43895) and strain FRIK47001P harboring pSC0061 which contains a functional hns and 90-bp upstream of the open-reading frame.ResultsThe hns mutant grew slower and was non-motile in comparison to the parent strain. Carbon and nitrogen metabolism was significantly altered in the hns mutant, which was incapable of utilizing 42 carbon, and 19 nitrogen sources that the parent strain metabolized. Among the non-metabolized substrates were several amino acids, organic acids, and key metabolic intermediates (i.e., pyruvate) that limit carbon acquisition and energy generation. Growth studies determined that the parent strain grew in LB containing 14 to 15% bile or bile salts, while the hns mutant grew in 6.5 and 9% of these compounds, respectively. Conversely, log-phase cells of the hns mutant were significantly (p < 0.05) more acid tolerant than the parent strain and hns mutant complemented with pSC0061. In mouse passage studies, the parent strain was recovered at a higher frequency (p < 0.01) than the hns mutant regardless of whether log- or stationary-phase phase cells were orally administered.ConclusionThese results demonstrate that H-NS is a powerful regulator of carbon and nitrogen metabolism as well as tolerance to bile salts. It is likely that the metabolic impairments and/or the reduced bile tolerance of the E. coli O157:H7 hns mutant decreased its ability to survive passage through mice. Collectively, these results expand the influence of H-NS on carbon and nitrogen metabolism and highlight its role in the ability of O157:H7 strains to respond to changing nutrients and conditions encountered in the environment and its hosts.


Archaea | 2008

Molybdate treatment and sulfate starvation decrease ATP and DNA levels in Ferroplasma acidarmanus

David J. Baumler; Kai-Foong Hung; Kwang Cheol Jeong; Charles W. Kaspar

Sulfate is a primary source of sulfur for most microbes and in some prokaryotes it is used an electron acceptor. The acidophile Ferroplasma acidarmanus (strain fer1) requires a minimum of 150 mM of a sulfate-containing salt for growth. Sulfate is assimilated by F. acidarmanus into proteins and reduced to form the volatile organic sulfur compounds methanethiol and dimethyldisulfide. In the absence of sulfate, cell death occurs by an unknown mechanism. In this study, cell viability and genomic DNA and ATP contents of F. acidarmanus were monitored in response to the absence of sulfate or the presence of sulfate and the sulfate analog molybdate (MoO(4) (2-)). Cellular DNA and ATP contents were monitored as markers of cell viability. The absence of sulfate led to a decrease in viable cell numbers of greater than 7 log(10 )within 5 days, a > 99% reduction in genomic DNA within 3 days, and a > 60% decrease in ATP within 6 h. Likewise, cells incubated with MoO(4) (2-) lost viability (decreased by > 2 log(10) in 5 days), extractable genomic DNA (reduction of > 60% in 2 days), and ATP (reduction of > 70 % in 2 hours). These results demonstrate that sulfate deprivation or the presence of molybdate have similar impacts on cell viability and essential biomolecules. Sulfate was coupled to cellular ATP content and maintenance of DNA integrity in F. acidarmanus, a finding that may be applicable to other acidophiles that are typically found in sulfate-rich biotopes.


BMC Systems Biology | 2013

Inferring ancient metabolism using ancestral core metabolic models of enterobacteria

David J. Baumler; Bing Ma; Jennifer L. Reed; Nicole T. Perna

BackgroundEnterobacteriaceae diversified from an ancestral lineage ~300-500 million years ago (mya) into a wide variety of free-living and host-associated lifestyles. Nutrient availability varies across niches, and evolution of metabolic networks likely played a key role in adaptation.ResultsHere we use a paleo systems biology approach to reconstruct and model metabolic networks of ancestral nodes of the enterobacteria phylogeny to investigate metabolism of ancient microorganisms and evolution of the networks. Specifically, we identified orthologous genes across genomes of 72 free-living enterobacteria (16 genera), and constructed core metabolic networks capturing conserved components for ancestral lineages leading to E. coli/Shigella (~10 mya), E. coli/Shigella/Salmonella (~100 mya), and all enterobacteria (~300-500 mya). Using these models we analyzed the capacity for carbon, nitrogen, phosphorous, sulfur, and iron utilization in aerobic and anaerobic conditions, identified conserved and differentiating catabolic phenotypes, and validated predictions by comparison to experimental data from extant organisms.ConclusionsThis is a novel approach using quantitative ancestral models to study metabolic network evolution and may be useful for identification of new targets to control infectious diseases caused by enterobacteria.


Applied and Environmental Microbiology | 2011

Feeding chitosan microparticles reduces Escherichia coli O157:H7 shedding in cattle

Kwang Cheol Jeong; Min Young Kang; Jihun Kang; David J. Baumler; Charles W. Kaspar

ABSTRACT Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a significant human pathogen that resides in healthy cattle. It is thought that a reduction in the prevalence and numbers of EHEC in cattle will reduce the load of EHEC entering the food chain. To this end, an intervention strategy involving the addition of chitosan microparticles (CM) to feed in order to reduce the carriage of this pathogen in cattle was evaluated. Experiments with individual Holstein calves and a crossover study found that the addition of CM to feed decreased E. coli O157:H7 shedding. In the crossover study, CM resulted in statistically significant reductions in the numbers recovered from rectal swab samples (P < 0.05) and the duration of shedding (P < 0.05). The effects of feeding CM to calves differed, indicating that the optimal levels of CM may differ between animals or that other factors are involved in the interaction between CM and E. coli O157:H7. In vitro studies demonstrated that E. coli O157:H7 binds to CM, suggesting that the reduction in shedding may result at least in part from the binding of positively charged CM to negatively charged E. coli cells. Additional studies are needed to determine the impact of CM feeding on animal production, but the results from this study indicate that supplementing feed with CM reduces the shedding of E. coli O157:H7 in cattle.


Applied and Environmental Microbiology | 2011

Reduction of Escherichia coli O157

Kwang Cheol Jeong; Min Young Kang; Jihun Kang; David J. Baumler; Charles W. Kaspar

ABSTRACT Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a significant human pathogen that resides in healthy cattle. It is thought that a reduction in the prevalence and numbers of EHEC in cattle will reduce the load of EHEC entering the food chain. To this end, an intervention strategy involving the addition of chitosan microparticles (CM) to feed in order to reduce the carriage of this pathogen in cattle was evaluated. Experiments with individual Holstein calves and a crossover study found that the addition of CM to feed decreased E. coli O157:H7 shedding. In the crossover study, CM resulted in statistically significant reductions in the numbers recovered from rectal swab samples (P < 0.05) and the duration of shedding (P < 0.05). The effects of feeding CM to calves differed, indicating that the optimal levels of CM may differ between animals or that other factors are involved in the interaction between CM and E. coli O157:H7. In vitro studies demonstrated that E. coli O157:H7 binds to CM, suggesting that the reduction in shedding may result at least in part from the binding of positively charged CM to negatively charged E. coli cells. Additional studies are needed to determine the impact of CM feeding on animal production, but the results from this study indicate that supplementing feed with CM reduces the shedding of E. coli O157:H7 in cattle.

Collaboration


Dive into the David J. Baumler's collaboration.

Top Co-Authors

Avatar

Charles W. Kaspar

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jihun Kang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Min Young Kang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Nicole T. Perna

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Boris Vykhodets

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Brian G. Fox

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Macalady

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Reed

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge