Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Bishop is active.

Publication


Featured researches published by David J. Bishop.


Journal of Lightwave Technology | 1999

Wavelength add-drop switching using tilting micromirrors

Joseph E. Ford; Vladimir A. Aksyuk; David J. Bishop; James A. Walker

This paper describes a single-mode optical fiber switch which routes individual signals into and out of a wavelength multiplexed data stream without interrupting the remaining channels. The switch uses free-space optical wavelength multiplexing and a column of micromechanical tilt-mirrors to switch 16 channels at 200 GHz spacing from 1531 to 1556 nm. The electrostatically actuated tilt mirrors use an 80 V peak-to-peak 300 KHz sinusoidal drive signal to switch between /spl plusmn/10/spl deg/ with a 20 /spl mu/s response. The total fiber-to-fiber insertion loss for the packaged switch is 5 dB for the passed signals and 8 dB for added and dropped signals, with 0.2 dB polarization dependence. Switching contrast was 30 dB or more for all 16 channels and all input and output states. We demonstrate operation by switching 622 Mb/s data on eight wavelength channels between the two input and output ports with negligible eye closure.


IEEE Journal of Selected Topics in Quantum Electronics | 1999

A silicon MEMS optical switch attenuator and its use in lightwave subsystems

Clinton Randy Giles; Vladimir A. Aksyuk; Bradley Paul Barber; R. Ruel; L. Stulz; David J. Bishop

A single-mode fiber connectorized microelectromechanical systems (MEMS) reflective optical switch attenuator operating in the 1550-nm wavelength region is described. The device consists of an electrostatically actuated gold-coated silicon vane interposed in a fiber gap yielding 0.81-dB minimum insertion loss in the transmit state and high transmission isolation in the reflection state with 2.15-dB minimum return loss. The switch attenuators also work as continuously variable optical attenuators capable of greater than 50-dB dynamic range and can be accurately regulated with a simple feedback control circuit. Switching voltages were in the range of 5-40 V and a switching time of 64 /spl mu/s was achieved. The MEMS switch can be used in optical subsystems within a wavelength-division-multiplexed (WDM) optical network such as optical power regulators, crossconnects, and add/drop multiplexers. We used a discrete array of 16 switch attenuators to implement a reconfigurable 16-channel 100-GHz spacing WDM drop module of an add/drop multiplexer. Thru-channel extinction was greater than 40 dB and average insertion loss was 21 dB. Both drop-and-transmit of multiple channels (11-18-dB contrast, 14-19-dB insertion loss) and drop-and-detect of single channels (>20-dB adjacent channel rejection, 10-14-dB insertion loss) were demonstrated.


Physical Review Letters | 2001

Nonlinear micromechanical Casimir oscillator.

Ho Bun Chan; Vladimir A. Aksyuk; Rafael Nathan Kleiman; David J. Bishop; Federico Capasso

The Casimir force between uncharged metallic surfaces originates from quantum-mechanical zero-point fluctuations of the electromagnetic field. We demonstrate that this quantum electrodynamical effect has a profound influence on the oscillatory behavior of microstructures when surfaces are in close proximity (< or =100 nm). Frequency shifts, hysteretic behavior, and bistability caused by the Casimir force are observed in the frequency response of a periodically driven micromachined torsional oscillator.


Physics Today | 1998

New Magnetic Superconductors: A Toy Box for Solid-State Physicists

Paul C. Canfield; Peter Ledel Gammel; David J. Bishop

Over the past decade, discussion of the interaction between superconductivity and magnetism has been overshadowed by the omnipresence of the oxide‐based, high‐temperature superconductors. But interest in the interaction between these two generally competing effects has a history that predates high‐Tc materials by several decades. Starting with seminal work by Bernd Matthias and his coworkers, it was found that magnetic impurities strongly suppress superconductivity in pure elements and binary compounds. This rapid suppression of the superconducting transition temperature Tc was due to the local magnetic moment of the impurity preventing the formation of the spin‐up/spin‐down conduction‐electron pairs that are responsible for superconductivity. The early measurements were made on dilute alloys, and for many solid‐state physicists of the time, the quest was to find compounds in which superconductivity coexists with an ordered lattice of local magnetic moments.


Physical Review Letters | 2000

Instabilities and disorder-driven first-order transition of the vortex lattice

Y. Paltiel; E. Zeldov; Y. Myasoedov; M. L. Rappaport; G. Jung; S. Bhattacharya; M. J. Higgins; Zhili Xiao; Eva Y. Andrei; P. L. Gammel; David J. Bishop

Transport studies in a Corbino disk suggest that the Bragg glass phase undergoes a first-order transition into a disordered solid. This transition shows sharp reentrant behavior at low fields. In contrast, in the conventional strip configuration, the phase transition is obscured by the injection of the disordered vortices through the sample edges, which results in the commonly observed vortex instabilities and smearing of the peak effect in NbSe2 crystals. These features are found to be absent in the Corbino geometry in which the circulating vortices do not cross the sample edges.


IEEE Photonics Technology Letters | 1998

A fiber connectorized MEMS variable optical attenuator

Bradley Paul Barber; C.R. Giles; V. Askyuk; R. Ruel; L. W. Stulz; David J. Bishop

A voltage-controlled moving-mirror microelectro-mechanical systems variable optical attenuator is described that has less than 1-dB fiber-to-fiber insertion loss at 1550-nm wavelength and greater than 50-dB dynamic range. The device was configured with a simple feedback circuit to operate as an optical power regulator capable of stabilizing the output power to within 0.26 dB for a 12-dB input power excursion.


Journal of Lightwave Technology | 2003

Beam-steering micromirrors for large optical cross-connects

Vladimir A. Aksyuk; Flavio Pardo; D. Carr; D.S. Greywall; Ho Bun Chan; M.E. Simon; Arman Gasparyan; Herbert Shea; V. Lifton; C. Bolle; S. Arney; R.E. Frahm; M. Paczkowski; M. Haueis; Roland Ryf; David T. Neilson; Jungsang Kim; Clinton Randy Giles; David J. Bishop

This paper describes Si-micromachined two-axis beam-steering micromirrors and their performance in 256 /spl times/ 256- and 1024 /spl times/ 1024-port large optical cross-connects (OXCs). The high-reflectivity wavelength-independent mirrors are electrostatically actuated; capable of large, continuous, controlled, dc tilt in any direction at moderate actuation voltages; and allow setting times of a few milliseconds. Packaged two-dimensional (2-D) arrays containing independently addressable identical 256 and 1296 mirrors are used to build fully functional bitrate and wavelength-independent single-stage, low-insertion-loss, single-mode fiber OXC fabrics.


Science | 1992

Magnetic Flux-Line Lattices and Vortices in the Copper Oxide Superconductors

David J. Bishop; Peter Ledel Gammel; David A. Huse; Cherry A. Murray

A variety of recent experiments on both the static and the dynamic properties of vortices and flux-line lattices in the mixed state of the copper oxide superconductors are discussed. The experiments are of two basic types: (i) experiments that image the magnetic flux patterns either with magnetic decoration or neutrons and give information about static structures, and (ii) experiments that explore the dynamics of vortices either through the resistivity or other electrodynamic responses of the material. Results of these experiments argue in favor of the existence of a true phase transition in the high-field vortex state from a low-temperature superconducting vortex glass phase into a disordered high-temperature vortex fluid phase. The vortex glass phase transition model does a good job of explaining high-precision measurements of the dynamics at the transition. At low fields and temperatures, very long range hexatic order in the flux-line lattice is observed.


Nature | 1998

Compound refractive optics for the imaging and focusing of low-energy neutrons

M. R. Eskildsen; P. L. Gammel; E. D. Isaacs; C. Detlefs; Kell Mortensen; David J. Bishop

Low-energy neutrons are essential for the analysis and characterization of materials and magnetic structures. However, both continuous (reactor-based) and pulsed (spallation-based) sources of such neutrons suffer from low fluence. Steering and lensing devices could improve this situation dramatically, so increasing spatial resolution, detectable sample volume limits and even perhaps opening the way for the construction of a neutron microscope. Neutron optics have to date exploited either Bragg diffraction,, such as bent crystals, or reflection, as in mirror guides or a Kumakhov lens,. Refractive optics remain an attractive alternative as they would permit full use of the beam cross-section, allow a compact and linear installation and, because of similarity to conventional optics, enable the use of commercial design and simulation tools. These advantages notwithstanding, single-element refractive optics have previously been considered impractical as they are too weakly focusing, too absorptive and too dispersive. Inspired by the recent demonstration of a compound refractive lens (CRL) for high-energy X-rays, we have designed, built and tested a prototype CRL for 9–20-Å neutrons by using readily available optical components: our CRL has gains greater than 15 and focal lengths of 1–6 m, well matched to small-angle neutron scattering.


Review of Scientific Instruments | 1985

Single‐crystal silicon high‐Q torsional oscillators

R. N. Kleiman; G. K. Kaminsky; J. D. Reppy; R. Pindak; David J. Bishop

We describe techniques for constructing single‐crystal silicon high‐Q torsional oscillators. The oscillators are fabricated by the high‐precision micromachining of silicon using orientation‐dependent etches. We describe methods for using these oscillators as very powerful probes of the mechanical properties of a variety of physical systems.

Collaboration


Dive into the David J. Bishop's collaboration.

Top Co-Authors

Avatar

Vladimir A. Aksyuk

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kell Mortensen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge