Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Chen is active.

Publication


Featured researches published by David J. Chen.


Nano Letters | 2009

Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes

Xuesong Li; Yanwu Zhu; Weiwei Cai; Mark Borysiak; Boyang Han; David J. Chen; Richard D. Piner; Luigi Colombo; Rodney S. Ruoff

Graphene, a two-dimensional monolayer of sp(2)-bonded carbon atoms, has been attracting great interest due to its unique transport properties. One of the promising applications of graphene is as a transparent conductive electrode owing to its high optical transmittance and conductivity. In this paper, we report on an improved transfer process of large-area graphene grown on Cu foils by chemical vapor deposition. The transferred graphene films have high electrical conductivity and high optical transmittance that make them suitable for transparent conductive electrode applications. The improved transfer processes will also be of great value for the fabrication of electronic devices such as field effect transistor and bilayer pseudospin field effect transistor devices.


Molecular Cell | 2004

Telomere Shortening Triggers Senescence of Human Cells through a Pathway Involving ATM, p53, and p21CIP1, but Not p16INK4a

Utz Herbig; Wendy A. Jobling; Benjamin P C Chen; David J. Chen; John M. Sedivy

Cellular senescence can be triggered by telomere shortening as well as a variety of stresses and signaling imbalances. We used multiparameter single-cell detection methods to investigate upstream signaling pathways and ensuing cell cycle checkpoint responses in human fibroblasts. Telomeric foci containing multiple DNA damage response factors were assembled in a subset of senescent cells and signaled through ATM to p53, upregulating p21 and causing G1 phase arrest. Inhibition of ATM expression or activity resulted in cell cycle reentry, indicating that stable arrest requires continuous signaling. ATR kinase appears to play a minor role in normal cells but in the absence of ATM elicited a delayed G2 phase arrest. These pathways do not affect expression of p16, which was upregulated in a telomere- and DNA damage-independent manner in a subset of cells. Distinct senescence programs can thus progress in parallel, resulting in mosaic cultures as well as individual cells responding to multiple signals.


ACS Nano | 2010

Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets

Yanwu Zhu; Meryl D. Stoller; Weiwei Cai; Aruna Velamakanni; Richard D. Piner; David J. Chen; Rodney S. Ruoff

Graphite oxide was exfoliated and dispersed in propylene carbonate (PC) by bath sonication. Heating the graphene oxide suspensions at 150 degrees C significantly reduced the graphene oxide platelets; paper samples comprising such reduced graphene oxide platelets had an electrical conductivity of 5230 S/m. By adding tetraethylammonium tetrafluoroborate (TEA BF(4)) to the reduced graphene oxide/PC slurry and making a two-cell ultracapacitor, specific capacitance values of about 120 F/g were obtained.


Nature Medicine | 2005

Genomic instability in laminopathy-based premature aging

Baohua Liu; Jianming Wang; Kui Ming Chan; Wai Mui Tjia; Wen Deng; Xin Yuan Guan; Jian-Dong Huang; Kai Man Li; Pui Yin Chau; David J. Chen; Duanqing Pei; Alberto M. Pendás; Juan Cadiñanos; Carlos López-Otín; Hung-Fat Tse; Christopher J. Hutchison; Junjie Chen; Yihai Cao; Kathryn S. E. Cheah; Karl Tryggvason; Zhongjun Zhou

Premature aging syndromes often result from mutations in nuclear proteins involved in the maintenance of genomic integrity. Lamin A is a major component of the nuclear lamina and nuclear skeleton. Truncation in lamin A causes Hutchinson-Gilford progerial syndrome (HGPS), a severe form of early-onset premature aging. Lack of functional Zmpste24, a metalloproteinase responsible for the maturation of prelamin A, also results in progeroid phenotypes in mice and humans. We found that Zmpste24-deficient mouse embryonic fibroblasts (MEFs) show increased DNA damage and chromosome aberrations and are more sensitive to DNA-damaging agents. Bone marrow cells isolated from Zmpste24−/− mice show increased aneuploidy and the mice are more sensitive to DNA-damaging agents. Recruitment of p53 binding protein 1 (53BP1) and Rad51 to sites of DNA lesion is impaired in Zmpste24−/− MEFs and in HGPS fibroblasts, resulting in delayed checkpoint response and defective DNA repair. Wild-type MEFs ectopically expressing unprocessible prelamin A show similar defects in checkpoint response and DNA repair. Our results indicate that unprocessed prelamin A and truncated lamin A act dominant negatively to perturb DNA damage response and repair, resulting in genomic instability which might contribute to laminopathy-based premature aging.


Nature Genetics | 2013

ESR1 ligand-binding domain mutations in hormone-resistant breast cancer

Weiyi Toy; Yang Shen; Helen H. Won; Bradley Green; Rita A. Sakr; Marie Will; Zhiqiang Li; Kinisha Gala; Sean W. Fanning; Tari A. King; Clifford A. Hudis; David J. Chen; Tetiana Taran; Gabriel N. Hortobagyi; Geoffrey L. Greene; Michael F. Berger; José Baselga; Sarat Chandarlapaty

Seventy percent of breast cancers express estrogen receptor (ER), and most of these are sensitive to ER inhibition. However, many such tumors for unknown reasons become refractory to inhibition of estrogen action in the metastatic setting. We conducted a comprehensive genetic analysis of two independent cohorts of metastatic ER-positive breast tumors and identified mutations in ESR1 affecting the ligand-binding domain (LBD) in 14 of 80 cases. These included highly recurrent mutations encoding p.Tyr537Ser, p.Tyr537Asn and p.Asp538Gly alterations. Molecular dynamics simulations suggest that the structures of the Tyr537Ser and Asp538Gly mutants involve hydrogen bonding of the mutant amino acids with Asp351, thus favoring the agonist conformation of the receptor. Consistent with this model, mutant receptors drive ER-dependent transcription and proliferation in the absence of hormone and reduce the efficacy of ER antagonists. These data implicate LBD-mutant forms of ER in mediating clinical resistance to hormonal therapy and suggest that more potent ER antagonists may be of substantial therapeutic benefit.


Cell Research | 2008

The endless tale of non-homologous end-joining

Eric Weterings; David J. Chen

DNA double-strand breaks (DSBs) are introduced in cells by ionizing radiation and reactive oxygen species. In addition, they are commonly generated during V(D)J recombination, an essential aspect of the developing immune system. Failure to effectively repair these DSBs can result in chromosome breakage, cell death, onset of cancer, and defects in the immune system of higher vertebrates. Fortunately, all mammalian cells possess two enzymatic pathways that mediate the repair of DSBs: homologous recombination and non-homologous end-joining (NHEJ). The NHEJ process utilizes enzymes that capture both ends of the broken DNA molecule, bring them together in a synaptic DNA-protein complex, and finally repair the DNA break. In this review, all the known enzymes that play a role in the NHEJ process are discussed and a working model for the co-operation of these enzymes during DSB repair is presented.


Journal of Cell Biology | 2007

Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks

Naoya Uematsu; Eric Weterings; Ken Ichi Yano; Keiko Morotomi-Yano; Burkhard Jakob; Gisela Taucher-Scholz; Pierre Olivier Mari; Dik C. van Gent; Benjamin P C Chen; David J. Chen

The DNA-dependent protein kinase catalytic subunit (DNA-PKCS) plays an important role during the repair of DNA double-strand breaks (DSBs). It is recruited to DNA ends in the early stages of the nonhomologous end-joining (NHEJ) process, which mediates DSB repair. To study DNA-PKCS recruitment in vivo, we used a laser system to introduce DSBs in a specified region of the cell nucleus. We show that DNA-PKCS accumulates at DSB sites in a Ku80-dependent manner, and that neither the kinase activity nor the phosphorylation status of DNA-PKCS influences its initial accumulation. However, impairment of both of these functions results in deficient DSB repair and the maintained presence of DNA-PKCS at unrepaired DSBs. The use of photobleaching techniques allowed us to determine that the kinase activity and phosphorylation status of DNA-PKCS influence the stability of its binding to DNA ends. We suggest a model in which DNA-PKCS phosphorylation/autophosphorylation facilitates NHEJ by destabilizing the interaction of DNA-PKCS with the DNA ends.


Molecular and Cellular Biology | 1999

Requirement for the Kinase Activity of Human DNA- Dependent Protein Kinase Catalytic Subunit in DNA Strand Break Rejoining

Akihiro Kurimasa; Satoshi Kumano; Nikolai V. Boubnov; Michael D. Story; Chang Shung Tung; Scott Peterson; David J. Chen

ABSTRACT The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an enormous, 470-kDa protein serine/threonine kinase that has homology with members of the phosphatidylinositol (PI) 3-kinase superfamily. This protein contributes to the repair of DNA double-strand breaks (DSBs) by assembling broken ends of DNA molecules in combination with the DNA-binding factors Ku70 and Ku80. It may also serve as a molecular scaffold for recruiting DNA repair factors to DNA strand breaks. This study attempts to better define the role of protein kinase activity in the repair of DNA DSBs. We constructed a contiguous 14-kb human DNA-PKcs cDNA and demonstrated that it can complement the DNA DSB repair defects of two mutant cell lines known to be deficient in DNA-PKcs (M059J and V3). We then created deletion and site-directed mutations within the conserved PI 3-kinase domain of the DNA-PKcs gene to test the importance of protein kinase activity for DSB rejoining. These DNA-PKcs mutant constructs are able to express the protein but fail to complement the DNA DSB or V(D)J recombination defects of DNA-PKcs mutant cells. These results indicate that the protein kinase activity of DNA-PKcs is essential for the rejoining of DNA DSBs in mammalian cells. We have also determined a model structure for the DNA-PKcs kinase domain based on comparisons to the crystallographic structure of a cyclic AMP-dependent protein kinase. This structure gives some insight into which amino acid residues are crucial for the kinase activity in DNA-PKcs.


Journal of Biological Chemistry | 2005

Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks

Benjamin P C Chen; Doug W. Chan; Junya Kobayashi; Sandeep Burma; Aroumougame Asaithamby; Keiko Morotomi-Yano; Elliot Botvinick; Jun Qin; David J. Chen

DNA-dependent protein kinase (DNA-PK), consisting of Ku and DNA-PKcs subunits, is the key component of the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. Although the kinase activity of DNA-PKcs is essential for NHEJ, thus far, no in vivo substrate has been conclusively identified except for an autophosphorylation site on DNA-PKcs itself (threonine 2609). Here we report the ionizing radiation (IR)-induced autophosphorylation of DNA-PKcs at a novel site, serine 2056, the phosphorylation of which is required for the repair of DSBs by NHEJ. Interestingly, IR-induced DNA-PKcs autophosphorylation is regulated in a cell cycle-dependent manner with attenuated phosphorylation in the S phase. In contrast, DNA replication-associated DSBs resulted in DNA-PKcs autophosphorylation and localization to DNA damage sites. These results indicate that although IR-induced DNA-PKcs phosphorylation is attenuated in the S phase, DNA-PKcs is preferentially activated by the physiologically relevant DNA replication-associated DSBs at the sites of DNA synthesis.


Molecular Cell | 2011

Requirement of ATM-Dependent Monoubiquitylation of Histone H2B for Timely Repair of DNA Double-Strand Breaks

Lilach Moyal; Yaniv Lerenthal; Mali Gana-Weisz; Gilad Mass; Sairei So; Shih Ya Wang; Berina Eppink; Young Min Chung; Gil Shalev; Efrat Shema; Dganit Shkedy; Nechama I. Smorodinsky; Nicole van Vliet; Bernhard Kuster; Matthias Mann; Aaron Ciechanover; Jochen Dahm-Daphi; Roland Kanaar; Mickey C T Hu; David J. Chen; Moshe Oren; Yosef Shiloh

The cellular response to DNA double-strand breaks (DSBs) is mobilized by the protein kinase ATM, which phosphorylates key players in the DNA damage response (DDR) network. A major question is how ATM controls DSB repair. Optimal repair requires chromatin relaxation at damaged sites. Chromatin reorganization is coupled to dynamic alterations in histone posttranslational modifications. Here, we show that in human cells, DSBs induce monoubiquitylation of histone H2B, a modification that is associated in undamaged cells with transcription elongation. We find that this process relies on recruitment to DSB sites and ATM-dependent phosphorylation of the responsible E3 ubiquitin ligase: the RNF20-RNF40 heterodimer. H2B monoubiquitylation is required for timely recruitment of players in the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair-and optimal repair via both pathways. Our data and previous data suggest a two-stage model for chromatin decondensation that facilitates DSB repair.

Collaboration


Dive into the David J. Chen's collaboration.

Top Co-Authors

Avatar

Benjamin P C Chen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandeep Burma

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aroumougame Asaithamby

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony J. Davis

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kyung Jong Lee

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge