Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Civitello is active.

Publication


Featured researches published by David J. Civitello.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Biodiversity inhibits parasites: Broad evidence for the dilution effect

David J. Civitello; Jeremy M. Cohen; Hiba Fatima; Neal T. Halstead; Josue Liriano; Taegan A. McMahon; C. Nicole Ortega; Erin L. Sauer; Tanya Sehgal; Suzanne Young; Jason R. Rohr

Significance The dilution effect hypothesis suggests that diverse ecological communities limit disease spread via several mechanisms. Therefore, biodiversity losses could worsen epidemics that harm humans and wildlife. However, there is contentious debate over whether the hypothesis applies broadly, especially for parasites that infect humans. We address this fundamental question with a formal meta-analysis of >200 assessments relating biodiversity to disease in >60 host–parasite systems. We find overwhelming evidence of dilution, which is independent of host density, study design, and type and specialization of parasites. A second analysis identified similar effects of diversity in plant–herbivore systems. Thus, biodiversity generally decreases parasitism and herbivory. Consequently, human-induced declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production. Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant–herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production.


Nature | 2014

Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression

Taegan A. McMahon; Brittany F. Sears; Matthew D. Venesky; Scott M. Bessler; Jenise M. Brown; Kaitlin Deutsch; Neal T. Halstead; Garrett Lentz; Nadia Tenouri; Suzanne Young; David J. Civitello; Nicole Ortega; J. Scott Fites; Laura K. Reinert; Louise A. Rollins-Smith; Thomas R. Raffel; Jason R. Rohr

Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing declines of many taxa, including bats, corals, bees, snakes and amphibians. Currently, there is little evidence that wild animals can acquire resistance to these pathogens. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent global decline of amphibians. Here we demonstrate that three species of amphibians can acquire behavioural or immunological resistance to B. dendrobatidis. Frogs learned to avoid the fungus after just one B. dendrobatidis exposure and temperature-induced clearance. In subsequent experiments in which B. dendrobatidis avoidance was prevented, the number of previous exposures was a negative predictor of B. dendrobatidis burden on frogs and B. dendrobatidis-induced mortality, and was a positive predictor of lymphocyte abundance and proliferation. These results suggest that amphibians can acquire immunity to B. dendrobatidis that overcomes pathogen-induced immunosuppression and increases their survival. Importantly, exposure to dead fungus induced a similar magnitude of acquired resistance as exposure to live fungus. Exposure of frogs to B. dendrobatidis antigens might offer a practical way to protect pathogen-naive amphibians and facilitate the reintroduction of amphibians to locations in the wild where B. dendrobatidis persists. Moreover, given the conserved nature of vertebrate immune responses to fungi and the fact that many animals are capable of learning to avoid natural enemies, these results offer hope that other wild animal taxa threatened by invasive fungi might be rescued by management approaches based on herd immunity.


Molecular Ecology | 2008

Microbial communities and interactions in the lone star tick, Amblyomma americanum.

Keith Clay; Olga Klyachko; Nathan Grindle; David J. Civitello; D. Oleske; Clay Fuqua

To quantify microbial composition and interactions, we identified prokaryotic communities in the lone star tick (Amblyomma americanum) based on 16S rRNA gene sequences and direct probing. The lone star tick is the vector of emerging diseases and host to additional symbionts of unknown activity, and is representative of other blood‐sucking arthropods. We evaluated the potential for vertical (transovarial) transmission by molecular analysis of microbial symbionts from egg and larval clutches. Direct probing of adults (N = 8 populations from the southeastern and midwestern USA, 900 ticks total) revealed three vertically transmitted symbionts: a Coxiella symbiont occurred at 100% frequency, Rickettsia species occurred in 45–61% of all ticks in every population and an Arsenophonus symbiont occurred in 0–90% of ticks per population. Arsenophonus and Rickettsia exhibited significant heterogeneity in frequency among populations. The human pathogens Ehrlichia chafeensis and Borrelia lonestari were rare in most populations. Additional microbes were detected sporadically. Most ticks (78%) were co‐infected by two or three microbes but statistical analysis indicated no significant deviation from random co‐occurrence. Our findings indicate that microbial communities within lone star ticks are diverse, and suggest that direct probing for a wider range of prokaryotes and application of quantitative polymerase chain reaction (PCR) may provide further insights into microbial interactions within disease vectors. Our results also emphasize the close phylogenetic relationship between tick symbionts and human pathogens, and consistent differences in their prevalence.


Journal of Medical Entomology | 2008

Infection and co-infection rates of Anaplasma phagocytophilum variants, Babesia spp., Borrelia burgdorferi, and the rickettsial endosymbiont in Ixodes scapularis (Acari: Ixodidae) from sites in Indiana, Maine, Pennsylvania, and Wisconsin.

Fresia E. Steiner; Robert R. Pinger; Carolyn N. Vann; Nate Grindle; David J. Civitello; Keith Clay; Clay Fuqua

Abstract In total, 394 questing adult blacklegged ticks, Ixodes scapularis Say (Acari: Ixodidae), collected at four sites were analyzed by polymerase chain reaction (PCR) for five microbial species: Anaplasma phagocytophilum, Babesia microti, Babesia odocoilei, Borrelia burgdorferi, and the rickettsial I. scapularis endosymbiont. Identities of genetic variants of A. phagocytophilum were determined by sequencing a portion of the 16S DNA. In 55% of infected ticks (193/351), a single agent was detected. In 45% (158/351), two or more agents were detected; 37% harbored two agents and 8% harbored three agents. One male tick, collected from Ft. McCoy, WI, harbored all four microbial genera. The highest rates of co-infection were by the Ixodes endosymbiont and B. burgdorferi (95/351). Two species of Babesia co-occurred within a single tick population in Wells National Estuarine Research Reserve, Wells, ME, whereas only B. odocoilei was found in other tick populations. Only A. phagocytophilum human anaplasmosis variant was detected in questing ticks from Tippecanoe River State Park, IN; from Wells; and Ft. McCoy, whereas a single infected tick from Presque Isle, PA, was infected by AP-Variant 1. Partially engorged ticks from deer in Tippecanoe River State Park were all infected with AP-Variant 1. Frequency of infections with each agent varied among populations. Rates and types of co-infections were not significantly different from random except for the Ixodes endosymbiont and B. burgdorferi in male ticks, which co-occurred less frequently than expected. Thus, I. scapularis hosts an array of pathogenic and symbiotic agents and potential evidence of interactions among microbial species was observed.


Science | 2012

Ecological context influences epidemic size and parasite-driven evolution

Meghan A. Duffy; Jessica Housley Ochs; Rachel M. Penczykowski; David J. Civitello; Christopher A. Klausmeier; Spencer R. Hall

Cost-Benefit Analysis Mounting resistance to infection is costly, requires energetic input, and may thus compromise fecundity. Duffy et al. (p. 1636; see the cover) tested the relationships between productivity, predation, and mortality in a combination of observations of a natural lake and an experimental replica of a clonal zooplankton-parasitic yeast population. In the wild, epidemics of the yeast could exceed 60% and cause significant host mortality. In this situation, the clonal zooplankton host faces the physiological dilemma of either increasing resistance to deal with infection or of safeguarding fecundity. Zooplankton that feed quickly can reproduce quickly, but also end up ingesting more yeast spores. However, because fish tend to cull infected hosts, fish predation counters infection. Ultimately, both wild and model systems showed that lakes with high productivity (more nitrogen) and/or few fish supported greater epidemics of yeast and more resistant hosts, whereas less productive lakes, or those with more fish, had smaller epidemics and hosts with higher susceptibility to the yeast. When the physiological cost of host resistance to a disease damages reproductive output, disease susceptibility can evolve. The occurrence and magnitude of disease outbreaks can strongly influence host evolution. In particular, when hosts face a resistance-fecundity trade-off, they might evolve increased resistance to infection during larger epidemics but increased susceptibility during smaller ones. We tested this theoretical prediction by using a zooplankton-yeast host-parasite system in which ecological factors determine epidemic size. Lakes with high productivity and low predation pressure had large yeast epidemics; during these outbreaks, hosts became more resistant to infection. However, with low productivity and high predation, epidemics remained small and hosts evolved increased susceptibility. Thus, by modulating disease outbreaks, ecological context (productivity and predation) shaped host evolution during epidemics. Consequently, anthropogenic alteration of productivity and predation might strongly influence both ecological and evolutionary outcomes of disease.


Journal of Medical Entomology | 2008

Exotic Grass Invasion Reduces Survival of Amblyomma americanum and Dermacentor variabilis Ticks (Acari: Ixodidae)

David J. Civitello; S. Luke Flory; Keith Clay

Abstract Exotic plants often invade areas of high human activity, such as along trails, roads, and forest edges, and in disturbed riparian areas. These same habitat types are also favored by ticks. This convergence suggests that habitat modifications caused by exotic plant invasions may mediate disease vector habitat quality, indirectly affecting human disease risk at the local spatial scale. We tested the hypothesis that experimental invasions of Japanese stiltgrass, Microstegium vimineum (Trin.) A. Camus, alter soil surface microclimate conditions, thereby reducing habitat quality for ticks. Microstegium is an exotic annual grass that is highly invasive throughout the eastern United States where the vector ticks Amblyomma americanum (Linnaeus) and Dermancentor variabilis (Say) occur. Ticks (n = 100 per species) were introduced into experimentally invaded and native vegetation control plots (n = 5 per treatment). D. variabilis mortality rate increased 173% and A. americanum mortality rate increased 70% in the invaded plots relative to those in control plots. Microstegium invasion also resulted in a 13.8% increase in temperature and an 18.8% decrease in humidity, which are known to increase tick mortality. We predict that areas invaded by Microstegium will have lower densities of host-seeking ticks and therefore reduced human disease risk. Our results emphasize the role of invasive species in mediating disease vector populations, the unpredictable consequences of biological invasions, and the need for integrative management strategies that can simultaneous address exotic plant invasions and vector-borne disease.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Predator diversity, intraguild predation, and indirect effects drive parasite transmission

Jason R. Rohr; David J. Civitello; Patrick W. Crumrine; Neal T. Halstead; Andrew D. Miller; Anna M. Schotthoefer; Carl Stenoien; Lucinda B. Johnson; Val R. Beasley

Significance Humans are altering biodiversity globally and infectious diseases are on the rise; thus, there is considerable interest in understanding how changes to biodiversity affect disease risk. We show that the diversity of predators that consume parasites was the best negative predictor of infections in frogs, suggesting that predation on parasites can be an important mechanism of disease reduction. Follow-up experiments, field data, and mathematical models revealed that intraguild predators, predators that consume both hosts and parasites, decrease macroparasite infections per host less than predators that only consume parasites, representing a general trait of predators that predicts their ability to reduce disease. Consequently, managing assemblages of non-intraguild and intraguild predators is an underutilized tool to minimize human and wildlife diseases. Humans are altering biodiversity globally and infectious diseases are on the rise; thus, there is interest in understanding how changes to biodiversity affect disease. Here, we explore how predator diversity shapes parasite transmission. In a mesocosm experiment that manipulated predator (larval dragonflies and damselflies) density and diversity, non-intraguild (non-IG) predators that only consume free-living cercariae (parasitic trematodes) reduced metacercarial infections in tadpoles, whereas intraguild (IG) predators that consume both parasites and tadpole hosts did not. This likely occurred because IG predators reduced tadpole densities and anticercarial behaviors, increasing per capita exposure rates of the surviving tadpoles (i.e., via density- and trait-mediated effects) despite the consumption of parasites. A mathematical model demonstrated that non-IG predators reduce macroparasite infections, but IG predation weakens this “dilution effect” and can even amplify parasite burdens. Consistent with the experiment and model, a wetland survey revealed that the diversity of IG predators was unrelated to metacercarial burdens in amphibians, but the diversity of non-IG predators was negatively correlated with infections. These results are strikingly similar to generalities that have emerged from the predator diversity–pest biocontrol literature, suggesting that there may be general mechanisms for pest control and that biocontrol research might inform disease management and vice versa. In summary, we identified a general trait of predators—where they fall on an IG predation continuum—that predicts their ability to reduce infections and possibly pests in general. Consequently, managing assemblages of predators represents an underused tool for the management of human and wildlife diseases and pest populations.


Trends in Parasitology | 2015

The context of host competence: a role for plasticity in host–parasite dynamics

Stephanie S. Gervasi; David J. Civitello; Holly J. Kilvitis; Lynn B. Martin

Even apparently similar hosts can respond differently to the same parasites. Some individuals or specific groups of individuals disproportionately affect disease dynamics. Understanding the sources of among-host heterogeneity in the ability to transmit parasites would improve disease management. A major source of host variation might be phenotypic plasticity – the tendency for phenotypes to change across different environments. Plasticity might be as important as, or even more important than, genetic change, especially in light of human modifications of the environment, because it can occur on a more rapid timescale than evolution. We argue that variation in phenotypic plasticity among and within species strongly contributes to epidemiological dynamics when parasites are shared among multiple hosts, which is often the case.


Ecology Letters | 2013

Parasite consumption and host interference can inhibit disease spread in dense populations

David J. Civitello; Susan Pearsall; Meghan A. Duffy; Spencer R. Hall

Disease dynamics hinge on parasite transmission among hosts. However, canonical models for transmission often fit data poorly, limiting predictive ability. One solution involves building mechanistic yet general links between host behaviour and disease spread. To illustrate, we focus on the exposure component of transmission for hosts that consume their parasites, combining experiments, models and field data. Models of transmission that incorporate parasite consumption and foraging interference among hosts vastly outperformed alternatives when fit to experimental data using a zooplankton host (Daphnia dentifera) that consumes spores of a fungus (Metschnikowia bicuspidata). Once plugged into a fully dynamic model, both mechanisms inhibited epidemics overall. Foraging interference further depressed parasite invasion and prevalence at high host density, creating unimodal (hump-shaped) relationships between host density and these indices. These novel results qualitatively matched a unimodal density-prevalence relationship in natural epidemics. Ultimately, a mechanistic approach to transmission can reveal new insights into disease outbreaks.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Spatial scale modulates the strength of ecological processes driving disease distributions

Jeremy M. Cohen; David J. Civitello; Amber J. Brace; Erin M. Feichtinger; C. Nicole Ortega; Jason C. Richardson; Erin L. Sauer; Xuan Liu; Jason R. Rohr

Significance For four decades, ecologists have hypothesized that biotic interactions predominantly control species’ distributions at local scales, whereas abiotic factors operate more at regional scales. Here, we demonstrate that the drivers of three emerging diseases (amphibian chytridiomycosis, West Nile virus, and Lyme disease) in the United States support the predictions of this fundamental hypothesis. Humans are contributing to biodiversity loss, changes in dispersal patterns, and global climate change at an unprecedented rate. Our results highlight that common single-scale analyses can misestimate the impact that humans are having on biodiversity, disease, and the environment. Humans are altering the distribution of species by changing the climate and disrupting biotic interactions and dispersal. A fundamental hypothesis in spatial ecology suggests that these effects are scale dependent; biotic interactions should shape distributions at local scales, whereas climate should dominate at regional scales. If so, common single-scale analyses might misestimate the impacts of anthropogenic modifications on biodiversity and the environment. However, large-scale datasets necessary to test these hypotheses have not been available until recently. Here we conduct a cross-continental, cross-scale (almost five orders of magnitude) analysis of the influence of biotic and abiotic processes and human population density on the distribution of three emerging pathogens: the amphibian chytrid fungus implicated in worldwide amphibian declines and West Nile virus and the bacterium that causes Lyme disease (Borrelia burgdorferi), which are responsible for ongoing human health crises. In all three systems, we show that biotic factors were significant predictors of pathogen distributions in multiple regression models only at local scales (∼102–103 km2), whereas climate and human population density always were significant only at relatively larger, regional scales (usually >104 km2). Spatial autocorrelation analyses revealed that biotic factors were more variable at smaller scales, whereas climatic factors were more variable at larger scales, as is consistent with the prediction that factors should be important at the scales at which they vary the most. Finally, no single scale could detect the importance of all three categories of processes. These results highlight that common single-scale analyses can misrepresent the true impact of anthropogenic modifications on biodiversity and the environment.

Collaboration


Dive into the David J. Civitello's collaboration.

Top Co-Authors

Avatar

Spencer R. Hall

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Jason R. Rohr

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neal T. Halstead

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Rachel M. Penczykowski

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Erin L. Sauer

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Jeremy M. Cohen

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Keith Clay

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Nicole Ortega

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge