Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. DeGraff is active.

Publication


Featured researches published by David J. DeGraff.


Oncogene | 2011

Wnt/β-Catenin activation promotes prostate tumor progression in a mouse model

Xiuping Yu; Yongqing Wang; David J. DeGraff; Marcia L. Wills; Robert J. Matusik

Our previous studies have found that activation of Wnt/β-catenin signaling resulted in mouse prostatic intraepithelial neoplasia (mPIN). In the large probasin promoter directed SV40-large T-antigen (LPB–Tag) expressing mouse prostate, mPIN forms with rare areas of adenocarcinoma. Combining expression of both Wnt-signaling and Tag expression in the mouse prostate, we have studied the role of Wnt/β-catenin signaling in the progression from mPIN to adenocarcinoma. Our results show that the prostates of mice expressing Tag alone or nuclear β-catenin alone developed mPIN, whereas the activation of both Tag and the Wnt/β-catenin pathway resulted in invasive prostate adenocarcinoma. Furthermore, Foxa2, a forkhead transcription factor, was induced by active Wnt/β-catenin signaling, and the expression of Foxa2 was associated with the invasive phenotype in the primary prostate cancer. In the LPB–Tag/dominant active (DA) β-catenin prostates, MMP7, a Wnt/β-catenin target gene, was upregulated. Furthermore, we also assessed AR and AR signaling pathway in these LPB–Tag/DA β-catenin mice. Although β-catenin is a well-known AR co-activator in vitro, our study provides strong in vivo evidences indicating that both AR protein and the AR pathway were downregulated in the prostate of LPB–Tag/DA β-catenin mice. Histological analysis shows that prostate sections derived from the LPB–Tag/DA β-catenin mice display neuroendocrine differentiation (NED), but NE cancer does not develop. Together, our findings indicate that Wnt/β-catenin signaling has an important role in the progression of mPIN to prostate adenocarcinoma.


PLOS ONE | 2012

Loss of the Urothelial Differentiation Marker FOXA1 Is Associated with High Grade, Late Stage Bladder Cancer and Increased Tumor Proliferation

David J. DeGraff; Peter E. Clark; Justin M. Cates; Hironobu Yamashita; Victoria L. Robinson; Xiuping Yu; Mark E. Smolkin; Sam S. Chang; Michael S. Cookson; Mary K. Herrick; Shahrokh F. Shariat; Gary D. Steinberg; Henry F. Frierson; Xue-Ru Wu; Dan Theodorescu; Robert J. Matusik

Approximately 50% of patients with muscle-invasive bladder cancer (MIBC) develop metastatic disease, which is almost invariably lethal. However, our understanding of pathways that drive aggressive behavior of MIBC is incomplete. Members of the FOXA subfamily of transcription factors are implicated in normal urogenital development and urologic malignancies. FOXA proteins are implicated in normal urothelial differentiation, but their role in bladder cancer is unknown. We examined FOXA expression in commonly used in vitro models of bladder cancer and in human bladder cancer specimens, and used a novel in vivo tissue recombination system to determine the functional significance of FOXA1 expression in bladder cancer. Logistic regression analysis showed decreased FOXA1 expression is associated with increasing tumor stage (p<0.001), and loss of FOXA1 is associated with high histologic grade (p<0.001). Also, we found that bladder urothelium that has undergone keratinizing squamous metaplasia, a precursor to the development of squamous cell carcinoma (SCC) exhibited loss of FOXA1 expression. Furthermore, 81% of cases of SCC of the bladder were negative for FOXA1 staining compared to only 40% of urothelial cell carcinomas. In addition, we showed that a subpopulation of FOXA1 negative urothelial tumor cells are highly proliferative. Knockdown of FOXA1 in RT4 bladder cancer cells resulted in increased expression of UPK1B, UPK2, UPK3A, and UPK3B, decreased E-cadherin expression and significantly increased cell proliferation, while overexpression of FOXA1 in T24 cells increased E-cadherin expression and significantly decreased cell growth and invasion. In vivo recombination of bladder cancer cells engineered to exhibit reduced FOXA1 expression with embryonic rat bladder mesenchyme and subsequent renal capsule engraftment resulted in enhanced tumor proliferation. These findings provide the first evidence linking loss of FOXA1 expression with histological subtypes of MIBC and urothelial cell proliferation, and suggest an important role for FOXA1 in the malignant phenotype of MIBC.


PLOS ONE | 2013

Activation of NF-kappa B signaling promotes growth of prostate cancer cells in bone.

Renjie Jin; Julie A. Sterling; James R. Edwards; David J. DeGraff; Changki Lee; Serk In Park; Robert J. Matusik

Patients with advanced prostate cancer almost invariably develop osseous metastasis. Although many studies indicate that the activation of NF-κB signaling appears to be correlated with advanced cancer and promotes tumor metastasis by influencing tumor cell migration and angiogenesis, the influence of altered NF-κB signaling in prostate cancer cells within boney metastatic lesions is not clearly understood. While C4-2B and PC3 prostate cancer cells grow well in the bone, LNCaP cells are difficult to grow in murine bone following intraskeletal injection. Our studies show that when compared to LNCaP, NF-κB activity is significantly higher in C4-2B and PC3, and that the activation of NF-κB signaling in prostate cancer cells resulted in the increased expression of the osteoclast inducing genes PTHrP and RANKL. Further, conditioned medium derived from NF-κB activated LNCaP cells induce osteoclast differentiation. In addition, inactivation of NF-κB signaling in prostate cancer cells inhibited tumor formation in the bone, both in the osteolytic PC3 and osteoblastic/osteoclastic mixed C4-2B cells; while the activation of NF-κB signaling in LNCaP cells promoted tumor establishment and proliferation in the bone. The activation of NF-κB in LNCaP cells resulted in the formation of an osteoblastic/osteoclastic mixed tumor with increased osteoclasts surrounding the new formed bone, similar to metastases commonly seen in patients with prostate cancer. These results indicate that osteoclastic reaction is required even in the osteoblastic cancer cells and the activation of NF-κB signaling in prostate cancer cells increases osteoclastogenesis by up-regulating osteoclastogenic genes, thereby contributing to bone metastatic formation.


Molecular Endocrinology | 2014

NFI transcription factors interact with FOXA1 to regulate prostate-specific gene expression

Magdalena M. Grabowska; Amicia D. Elliott; David J. DeGraff; Philip D. Anderson; Govindaraj Anumanthan; Hironobu Yamashita; Qian Sun; David B. Friedman; David L. Hachey; Xiuping Yu; Jonathan H. Sheehan; Jung Mo Ahn; Ganesh V. Raj; David W. Piston; Richard M. Gronostajski; Robert J. Matusik

Androgen receptor (AR) action throughout prostate development and in maintenance of the prostatic epithelium is partly controlled by interactions between AR and forkhead box (FOX) transcription factors, particularly FOXA1. We sought to identity additional FOXA1 binding partners that may mediate prostate-specific gene expression. Here we identify the nuclear factor I (NFI) family of transcription factors as novel FOXA1 binding proteins. All four family members (NFIA, NFIB, NFIC, and NFIX) can interact with FOXA1, and knockdown studies in androgen-dependent LNCaP cells determined that modulating expression of NFI family members results in changes in AR target gene expression. This effect is probably mediated by binding of NFI family members to AR target gene promoters, because chromatin immunoprecipitation (ChIP) studies found that NFIB bound to the prostate-specific antigen enhancer. Förster resonance energy transfer studies revealed that FOXA1 is capable of bringing AR and NFIX into proximity, indicating that FOXA1 facilitates the AR and NFI interaction by bridging the complex. To determine the extent to which NFI family members regulate AR/FOXA1 target genes, motif analysis of publicly available data for ChIP followed by sequencing was undertaken. This analysis revealed that 34.4% of peaks bound by AR and FOXA1 contain NFI binding sites. Validation of 8 of these peaks by ChIP revealed that NFI family members can bind 6 of these predicted genomic elements, and 4 of the 8 associated genes undergo gene expression changes as a result of individual NFI knockdown. These observations suggest that NFI regulation of FOXA1/AR action is a frequent event, with individual family members playing distinct roles in AR target gene expression.


Urologic Oncology-seminars and Original Investigations | 2013

When urothelial differentiation pathways go wrong: implications for bladder cancer development and progression.

David J. DeGraff; Justin M. Cates; Joshua R. Mauney; Peter E. Clark; Robert J. Matusik; Rosalyn M. Adam

Differentiation is defined as the ability of a cell to acquire full functional behavior. For instance, the function of bladder urothelium is to act as a barrier to the diffusion of solutes into or out of the urine after excretion by the kidney. The urothelium also serves to protect the detrusor muscle from toxins present in stored urine. A major event in the initiation and progression of bladder cancer is loss of urothelial differentiation. This is important because less differentiated urothelial tumors (higher histologic tumor grade) are typically associated with increased biologic and clinical aggressiveness. The differentiation status of urothelial carcinomas can be assessed by histopathologic examination and is reflected in the assignment of a histologic grade (low-grade or high-grade). Although typically limited to morphologic evaluation in most routine diagnostic practices, tumor grade can also be assessed using biochemical markers. Indeed, current pathological analysis of tumor specimens is increasingly reliant on molecular phenotyping. Thus, high priorities for bladder cancer research include identification of (1) biomarkers that will enable the identification of high grade T1 tumors that pose the most threat and require the most aggressive treatment; (2) biomarkers that predict the likelihood that a low grade, American Joint Committee on Cancer stage pTa bladder tumor will progress into an invasive carcinoma with metastatic potential; (3) biomarkers that indicate which pTa tumors are most likely to recur, thus enabling clinicians to prospectively identify patients who require aggressive treatment; and (4) how these markers might contribute to biological processes that underlie tumor progression and metastasis, potentially through loss of terminal differentiation. This review will discuss the proteins associated with urothelial cell differentiation, with a focus on those implicated in bladder cancer, and other proteins that may be involved in neoplastic progression. It is hoped that ongoing discoveries associated with the study of these differentiation-promoting proteins can be translated into the clinic to positively impact patient care.


Laboratory Investigation | 2014

FOXA1 deletion in luminal epithelium causes prostatic hyperplasia and alteration of differentiated phenotype

David J. DeGraff; Magdalena M. Grabowska; Tom Case; Xiuping Yu; Mary K. Herrick; William J. Hayward; Douglas W. Strand; Justin M. Cates; Simon W. Hayward; Nan Gao; Michael A. Walter; Ralph Buttyan; Yajun Yi; Klaus H. Kaestner; Robert J. Matusik

The forkhead box (Fox) superfamily of transcription factors has essential roles in organogenesis and tissue differentiation. Foxa1 and Foxa2 are expressed during prostate budding and ductal morphogenesis, whereas Foxa1 expression is retained in adult prostate epithelium. Previous characterization of prostatic tissue rescued from embryonic Foxa1 knockout mice revealed Foxa1 to be essential for ductal morphogenesis and epithelial maturation. However, it is unknown whether Foxa1 is required to maintain the differentiated status in adult prostate epithelium. Here, we employed the PBCre4 transgenic system and determined the impact of prostate-specific Foxa1 deletion in adult murine epithelium. PBCre4/Foxa1loxp/loxp mouse prostates showed progressive florid hyperplasia with extensive cribriform patterning, with the anterior prostate being most affected. Immunohistochemistry studies show mosaic Foxa1 KO consistent with PBCre4 activity, with Foxa1 KO epithelial cells specifically exhibiting altered cell morphology, increased proliferation, and elevated expression of basal cell markers. Castration studies showed that, while PBCre4/Foxa1loxp/loxp prostates did not exhibit altered sensitivity in response to hormone ablation compared with control prostates, the number of Foxa1-positive cells in mosaic Foxa1 KO prostates was significantly reduced compared with Foxa1-negative cells following castration. Unexpectedly, gene expression profile analyses revealed that Foxa1 deletion caused abnormal expression of seminal vesicle-associated genes in KO prostates. In summary, these results indicate Foxa1 expression is required for the maintenance of prostatic cellular differentiation.


Carcinogenesis | 2013

Macrophage migratory inhibitory factor promotes bladder cancer progression via increasing proliferation and angiogenesis

Shilpa Choudhary; Poornima Hegde; James Pruitt; Thais Sielecki; Dharamainder Choudhary; Kristen Scarpato; David J. DeGraff; Carol C. Pilbeam; John A. Taylor

Macrophage migratory inhibitory factor (MIF) is a proinflammatory cytokine shown to promote tumorigenesis. Using the N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) model of bladder cancer, we previously showed that MIF knockout mice display decreased angiogenesis and invasion compared with wild-type. This study examines the role of MIF in bladder cancer via use of oral inhibitors of MIF. In vitro, high-grade bladder cancer cells were treated with recombinant human MIF +/- (rhMIF+/-) inhibitor. Measurements included cell counts, proliferation by (3)H-thymidine incorporation (TdR), extracellular signal-regulated kinase (ERK) phosphorylation by western blot analysis, messenger RNA (mRNA) expression by quantitative PCR and protein secretion by enzyme-linked immunosorbent assay. Treatment with rhMIF increased ERK phosphorylation, cell counts, TdR and mRNA expression and protein secretion of vascular endothelial growth factor, which were blocked by specific inhibitors of ERK and MIF. In vivo, 3-month-old male C57Bl/6 mice were given BBN for 22 and 16 weeks in study 1 and study 2, respectively. Mice (n = 8-10 per group) were gavaged with vehicle or doses of MIF inhibitors daily from weeks 16-22 in both studies. Average bladder weights, reflecting tumor mass, tumor stage/burden, mitotic rate and proliferation indices, and microvessel densities were reduced in inhibitor groups versus controls. In summary, MIF promotes bladder cancer via increasing cell proliferation and angiogenesis and oral inhibitors of MIF may prove useful in treatment of this disease.


Molecular Cancer Research | 2014

Tailoring peptidomimetics for targeting protein-protein interactions

Omar N. Akram; David J. DeGraff; Jonathan H. Sheehan; Wayne D. Tilley; Robert J. Matusik; Jung Mo Ahn; Ganesh V. Raj

Protein–protein interactions (PPI) are a hallmark of cellular signaling. Such interactions occur abundantly within the cellular milieu and encompass interactions involved in vital cellular processes. Understanding the various types, mechanisms, and consequences of PPIs with respect to cellular signaling and function is vital for targeted drug therapy. Various types of small-molecule drugs and targeted approaches to drug design have been developed to modulate PPIs. Peptidomimetics offer an exciting class of therapeutics as they can be designed to target specific PPIs by mimicking key recognition motifs found at critical points in the interface of PPIs (e.g., hotspots). In contrast to peptides, peptidomimetics do not possess a natural peptide backbone structure but present essential functional groups in a required three-dimensional pattern complimentary to the protein-binding pocket. This design feature overcomes many limitations of peptide therapeutics including limited stability toward peptidases, poor transport across biologic membranes, and poor target specificity. Equally important is deciphering the structural requirements and amino acid residues critical to PPIs. This review provides an up-to-date perspective of the complexity of cellular signaling and strategies for targeting PPIs in disease states, particularly in cancer, using peptidomimetics, and highlights that the rational design of agents that target PPIs is not only feasible but is of the utmost clinical importance. Mol Cancer Res; 12(7); 967–78. ©2014 AACR.


American Journal of Pathology | 2015

Loss of FOXA1 Drives Sexually Dimorphic Changes in Urothelial Differentiation and Is an Independent Predictor of Poor Prognosis in Bladder Cancer.

Opal L. Reddy; Justin M. Cates; Lan L. Gellert; Henry Crist; Zhaohai Yang; Hironobu Yamashita; John A. Taylor; Joseph A. Smith; Sam S. Chang; Michael S. Cookson; Chaochen You; Daniel A. Barocas; Magdalena M. Grabowska; Fei Ye; Xue-Ru Wu; Yajun Yi; Robert J. Matusik; Klaus H. Kaestner; Peter E. Clark; David J. DeGraff

We previously found loss of forkhead box A1 (FOXA1) expression to be associated with aggressive urothelial carcinoma of the bladder, as well as increased tumor proliferation and invasion. These initial findings were substantiated by The Cancer Genome Atlas, which identified FOXA1 mutations in a subset of bladder cancers. However, the prognostic significance of FOXA1 inactivation and the effect of FOXA1 loss on urothelial differentiation remain unknown. Application of a univariate analysis (log-rank) and a multivariate Cox proportional hazards regression model revealed that loss of FOXA1 expression is an independent predictor of decreased overall survival. An ubiquitin Cre-driven system ablating Foxa1 expression in urothelium of adult mice resulted in sex-specific histologic alterations, with male mice developing urothelial hyperplasia and female mice developing keratinizing squamous metaplasia. Microarray analysis confirmed these findings and revealed a significant increase in cytokeratin 14 expression in the urothelium of the female Foxa1 knockout mouse and an increase in the expression of a number of genes normally associated with keratinocyte differentiation. IHC confirmed increased cytokeratin 14 expression in female bladders and additionally revealed enrichment of cytokeratin 14-positive basal cells in the hyperplastic urothelial mucosa in male Foxa1 knockout mice. Analysis of human tumor specimens confirmed a significant relationship between loss of FOXA1 and increased cytokeratin 14 expression.


Molecular Endocrinology | 2009

Upstream Stimulatory Factor 2, a Novel FoxA1-Interacting Protein, Is Involved in Prostate-Specific Gene Expression

Qian Sun; Xiuping Yu; David J. DeGraff; Robert J. Matusik

The forkhead protein A1 (FoxA1) is critical for the androgenic regulation of prostate-specific promoters. Prostate tissue rescued from FoxA1 knockout mice exhibits abnormal prostate development, typified by the absence of expression of differentiation markers and inability to engage in secretion. Chromatin immunoprecipitation and coimmunoprecipitation studies revealed that FoxA1 is one of the earliest transcription factors that binds to prostate-specific promoters, and that a direct protein-protein interaction occurs between FoxA1 and androgen receptor. Interestingly, evidence of the interaction of FoxA1 with other transcription factors is lacking. The upstream stimulatory factor 2 (USF2), an E-box-binding transcription factor of the basic-helix-loop-helix-leucine-zipper family, binds to a consensus DNA sequence similar to FoxA1. Our in vitro and in vivo studies demonstrate the binding of USF2 to prostate-specific gene promoters including the probasin promoter, spermine-binding protein promoter, and prostate-specific antigen core enhancer. Furthermore, we show a direct physical interaction between FoxA1 and USF2 through the use of immunoprecipitation and glutathione-S-transferase pull-down assays. This interaction is mediated via the forkhead DNA-binding domain of FoxA1 and the DNA-binding domain of USF2. In summary, these data indicate that USF2 is one of the components of the FoxA1/androgen receptor transcriptional protein complex that contributes to the expression of androgen-regulated and prostate-specific genes.

Collaboration


Dive into the David J. DeGraff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua I. Warrick

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jay D. Raman

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hironobu Yamashita

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Justin M. Cates

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lauren Shuman

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Matthew Kaag

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter E. Clark

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zongyu Zheng

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge