David J. Dowling
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David J. Dowling.
Trends in Immunology | 2014
David J. Dowling; Ofer Levy
The human immune system comprises cellular and molecular components designed to coordinately prevent infection while avoiding potentially harmful inflammation and autoimmunity. Immunity varies with age, reflecting unique age-dependent challenges including fetal gestation, the neonatal phase, and infancy. Here, we review novel mechanistic insights into early life immunity, with an emphasis on emerging models of human immune ontogeny, which may inform age-specific translational development of novel anti-infectives, immunomodulators, and vaccines.
Infection and Immunity | 2010
David J. Dowling; Clare M. Hamilton; Sheila Donnelly; James La Course; Peter M. Brophy; John P. Dalton; Sandra M. O'Neill
ABSTRACT Fasciola hepatica is a helminth pathogen that drives Th2/Treg immune responses in its mammalian host. The parasite releases a large number of molecules that are critical to inducing this type of immune response. Here we have selected recombinant forms of two major F. hepatica secreted molecules, the protease cathepsin L (rFhCL1) and an antioxidant, sigma class glutathione transferase (rFhGST-si), to examine their interactions with dendritic cells (DCs). Despite enzymatic and functional differences between these molecules, both induced interleukin-6 (IL-6), IL-12p40, and macrophage inflammatory protein 2 (MIP-2) secretion from DCs and enhanced CD40 expression. While this induction was mediated by Toll-like receptor 4 (TLR4), the subsequent intracellular signaling pathways differed; rFhCL1 signaled through p38, and rFhGST-si mediated its effect via c-Jun N-terminal kinase (JNK), p38, p-NF-κBp65, and IRF5. Neither rFhCL1 nor rFhGST-si enhanced DC phagocytosis or induced Th2 immune responses in vivo. However, DCs matured in the presence of either enzyme attenuated IL-17 production from OVA peptide-specific T cells in vivo. In addition, DCs exposed to either antigen secreted reduced levels of IL-23. Therefore, both F. hepatica FhCL1 and FhGST-si modulate host immunity by suppressing responses associated with chronic inflammation—an immune modulatory mechanism that may benefit the parasites survival within the host.
Infection and Immunity | 2009
Clare M. Hamilton; David J. Dowling; Christine E. Loscher; Russell M. Morphew; Peter M. Brophy; Sandra M. O'Neill
ABSTRACT Parasitic worms and molecules derived from them have powerful anti-inflammatory properties and are shown to have therapeutic effects on inflammatory diseases. The helminth Fasciola hepatica has been reported to suppress antigen-specific Th1 responses in concurrent bacterial infections, thus demonstrating its anti-inflammatory ability in vivo. Here, F. hepatica tegumental antigen (Teg) was shown to significantly suppress serum levels of gamma interferon (IFN-γ) and interleukin-12p70 (IL-12p70) in a model of septic shock. Since dendritic cells (DCs) are a good source of IL-12p70 and critical in driving adaptive immunity, we investigated the effects of F. hepatica Teg on the activation and function of murine DCs. While Teg alone did not induce cytokine production or cell surface marker expression on DCs, it significantly suppressed cytokine production (IL-12p70, IL-6, IL-10, tumor necrosis factor alpha, and nitrite) and cell surface marker expression (CD80, CD86, and CD40) in DCs matured with a range of Toll-like receptor (TLR) and non-TLR ligands. Teg works independently of the TLR4 pathway, since it still functioned in DCs generated from TLR4 mutant and knockout mice. It impaired DC function by inhibiting their phagocytic capacity and their ability to prime T cells. It does not appear to target the common components (extracellular signal-regulated kinase, Jun N-terminal protein kinase, or p38) of the TLR pathways; however, it suppressed the active p65 subunit of the transcription factor NF-κB in mature DCs, which could explain the impairment of proinflammatory cytokine production. Overall, our results demonstrate the potent anti-inflammatory properties of F. hepatica Teg and its therapeutic potential as an anti-inflammatory agent.
Cytokine | 2008
David J. Dowling; Clare M. Hamilton; Sandra M. O’Neill
Dendritic cells (DCs) are professional antigen-presenting cells that play a vital role in shaping adaptive immunity. DC maturation begins when exogenous danger signals bind to the appropriate toll-like receptor (TLR) and initiate expression of cell surface markers and the secretion of cytokines. This process occurs through defined mitogen-activated protein kinase (MAPK) signalling pathways. Of the 13 known mammalian TLRs, lipopolysaccharide (LPS), which activates TLR4, is the most commonly used ligand for the maturation of DCs in vitro. This comprehensive study measures cytokine secretion and cell surface marker expression in murine bone-marrow-derived DCs following maturation with LPS compared to DCs matured with a panel of other TLR-ligands (zymosan A (TLR2/6), PGN (TLR2), poly(I:C) (TLR3), flagellin (TLR5) and CpG-ODN1826 (TLR9)). The role of MAPK signalling pathways in the maturation process was also examined. Results demonstrate that zymosan A and CpG induce comparable cytokine and cell surface marker profiles to LPS. The remaining ligands differed significantly for cytokine and CD40 expression, but not for CD80 and CD86 expression. While there were differences for MAPK signalling pathways for all ligands, the effect of the inhibitors were broadly similar. These findings broaden our knowledge of TLR ligand-matured DCs.
PLOS ONE | 2013
David J. Dowling; Zhen Tan; Zofia M. Prokopowicz; Christine D. Palmer; Maura Matthews; Gregory N. Dietsch; Robert M. Hershberg; Ofer Levy
Background Newborns display distinct immune responses that contribute to susceptibility to infection and reduced vaccine responses. Toll-like receptor (TLR) agonists may serve as vaccine adjuvants, when given individually or in combination, but responses of neonatal leukocytes to many TLR agonists are diminished. TLR8 agonists are more effective than other TLR agonists in activating human neonatal leukocytes in vitro, but little is known about whether different TLR8 agonists may distinctly activate neonatal leukocytes. We characterized the in vitro immuno-stimulatory activities of a novel benzazepine TLR8 agonist, VTX-294, in comparison to imidazoquinolines that activate TLR8 (R-848; (TLR7/8) CL075; (TLR8/7)), with respect to activation of human newborn and adult leukocytes. Effects of VTX-294 and R-848 in combination with monophosphoryl lipid A (MPLA; TLR4) were also assessed. Methods TLR agonist specificity was assessed using TLR-transfected HEK293 cells expressing a NF-κB reporter gene. TLR agonist-induced cytokine production was measured in human newborn cord and adult peripheral blood using ELISA and multiplex assays. Newborn and adult monocytes were differentiated into monocyte-derived dendritic cells (MoDCs) and TLR agonist-induced activation assessed by cytokine production (ELISA) and co-stimulatory molecule expression (flow cytometry). Results VTX-294 was ∼100x more active on TLR8- than TLR7-transfected HEK cells (EC50, ∼50 nM vs. ∼5700 nM). VTX-294-induced TNF and IL-1β production were comparable in newborn cord and adult peripheral blood, while VTX-294 was ∼ 1 log more potent in inducing TNF and IL-1β production than MPLA, R848 or CL075. Combination of VTX-294 and MPLA induced greater blood TNF and IL-1β responses than combination of R-848 and MPLA. VTX-294 also potently induced expression of cytokines and co-stimulatory molecules HLA-DR and CD86 in human newborn MoDCs. Conclusions VTX-294 is a novel ultra-potent TLR8 agonist that activates newborn and adult leukocytes and is a candidate vaccine adjuvant in both early life and adulthood.
PLOS Neglected Tropical Diseases | 2012
E. James LaCourse; Samirah Perally; Russell M. Morphew; Joseph V. Moxon; Mark C. Prescott; David J. Dowling; Sandra M. O'Neill; Anja Kipar; U. Hetzel; Elizabeth M. Hoey; R. Zafra; L. Buffoni; José Pérez Arévalo; Peter M. Brophy
Background Liver fluke infection of livestock causes economic losses of over US
The Journal of Allergy and Clinical Immunology | 2017
David J. Dowling; Evan A. Scott; Annette Scheid; Ilana Bergelson; Sweta Joshi; Carlo Pietrasanta; Spencer Brightman; Guzman Sanchez-Schmitz; Simon D. van Haren; Jana Ninković; Dina Kats; Cristiana Guiducci; Alexandre de Titta; Daniel K. Bonner; Sachiko Hirosue; Melody A. Swartz; Jeffrey A. Hubbell; Ofer Levy
3 billion worldwide per annum. The disease is increasing in livestock worldwide and is a re-emerging human disease. There are currently no commercial vaccines, and only one drug with significant efficacy against adult worms and juveniles. A liver fluke vaccine is deemed essential as short-lived chemotherapy, which is prone to resistance, is an unsustainable option in both developed and developing countries. Protein superfamilies have provided a number of leading liver fluke vaccine candidates. A new form of glutathione transferase (GST) family, Sigma class GST, closely related to a leading Schistosome vaccine candidate (Sm28), has previously been revealed by proteomics in the liver fluke but not functionally characterised. Methodology/Principal Findings In this manuscript we show that a purified recombinant form of the F. hepatica Sigma class GST possesses prostaglandin synthase activity and influences activity of host immune cells. Immunocytochemistry and western blotting have shown the protein is present near the surface of the fluke and expressed in eggs and newly excysted juveniles, and present in the excretory/secretory fraction of adults. We have assessed the potential to use F. hepatica Sigma class GST as a vaccine in a goat-based vaccine trial. No significant reduction of worm burden was found but we show significant reduction in the pathology normally associated with liver fluke infection. Conclusions/Significance We have shown that F. hepatica Sigma class GST has likely multi-functional roles in the host-parasite interaction from general detoxification and bile acid sequestration to PGD synthase activity.
JCI insight | 2017
David J. Dowling; Simon D. van Haren; Annette Scheid; Ilana Bergelson; Dhohyung Kim; Christy J. Mancuso; Willemina Foppen; Al Ozonoff; Lynn Fresh; Terese B. Theriot; Andrew A. Lackner; Raina N. Fichorova; Dmitri Smirnov; John P. Vasilakos; Joe M. Beaurline; Mark A. Tomai; Cecily C. Midkiff; Xavier Alvarez; James Blanchard; Margaret H. Gilbert; Pyone P. Aye; Ofer Levy
Background Newborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age‐specific vaccine formulations to overcome suboptimal immunization. Objective Small‐molecule imidazoquinoline Toll‐like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age‐ and species‐specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs. Methods Chemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist–encapsulating polymersome formulations were then synthesized. Novel 96‐well in vitro assays using neonatal human monocyte‐derived DCs and humanized TLR8 mouse bone marrow–derived DCs enabled benchmarking of the TLR8 agonist–encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25–loaded BCG‐mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice. Results Although alum‐adjuvanted vaccines induced modest costimulatory molecule expression, limited TH‐polarizing cytokine production, and significant cell death, BCG induced a robust adult‐like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL‐12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist–adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B‐specific CD4+ T‐cell numbers. Conclusion TLR8 agonist–encapsulating polymersomes hold substantial potential for early‐life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early‐life vaccines. Graphical abstract Figure. No Caption available.
Journal of Immunology | 2016
Simon D. van Haren; David J. Dowling; Willemina Foppen; Dennis Christensen; Peter Andersen; Steven G. Reed; Robert M. Hershberg; Lindsey R. Baden; Ofer Levy
Infection is the most common cause of mortality in early life, and immunization is the most promising biomedical intervention to reduce this burden. However, newborns fail to respond optimally to most vaccines. Adjuvantation is a key approach to enhancing vaccine immunogenicity, but responses of human newborn leukocytes to most candidate adjuvants, including most TLR agonists, are functionally distinct. Herein, we demonstrate that 3M-052 is a locally acting lipidated imidazoquinoline TLR7/8 agonist adjuvant in mice, which, when properly formulated, can induce robust Th1 cytokine production by human newborn leukocytes in vitro, both alone and in synergy with the alum-adjuvanted pneumococcal conjugate vaccine 13 (PCV13). When admixed with PCV13 and administered i.m. on the first day of life to rhesus macaques, 3M-052 dramatically enhanced generation of Th1 CRM-197-specific neonatal CD4+ cells, activation of newborn and infant Streptococcus pneumoniae polysaccharide-specific (PnPS-specific) B cells as well as serotype-specific antibody titers, and opsonophagocytic killing. Remarkably, a single dose at birth of PCV13 plus 0.1 mg/kg 3M-052 induced PnPS-specific IgG responses that were approximately 10-100 times greater than a single birth dose of PCV13 alone, rapidly exceeding the serologic correlate of protection, as early as 28 days of life. This potent immunization strategy, potentially effective with one birth dose, could represent a new paradigm in early life vaccine development.
Cytokine | 2016
Simon D. van Haren; Lakshmi Ganapathi; Ilana Bergelson; David J. Dowling; Michaela Banks; Ronald C. Samuels; Steven G. Reed; Jason D. Marshall; Ofer Levy
Due to functionally distinct cell-mediated immunity, newborns and infants are highly susceptible to infection with intracellular pathogens. Indeed, neonatal Ag-presenting dendritic cells (DCs) demonstrate impaired Th1 responses to many candidate adjuvants, including most TLR agonists (TLRAs). Combination adjuvantation systems may provide enhanced immune activation but have typically been developed without regard to the age of the target population. We posited that distinct combinations of TLRAs and C-type lectin receptor agonists may enhance Th1 responses of newborn DCs. TLRA/C-type lectin receptor agonist combinations were screened for enhancement of TNF production by human newborn and adult monocyte-derived DCs cultured in 10% autologous plasma or in newborn cord, infant, adult, and elderly whole blood. Monocyte-derived DC activation was characterized by targeted gene expression analysis, caspase-1 and NF-κB studies, cytokine multiplex and naive autologous CD4+ T cell activation. Dual activation of newborn DCs via the C-type lectin receptor, macrophage-inducible C-type lectin (trehalose-6,6-dibehenate), and TLR7/8 (R848) greatly enhanced caspase-1 and NF-κB activation, Th1 polarizing cytokine production and autologous Th1 polarization. Combined activation via TLR4 (glycopyranosyl lipid adjuvant aqueous formulation) and Dectin-1 (β-glucan peptide) acted synergistically in newborns and adults, but to a lesser extent. The degree of synergy varied dramatically with age, and was the greatest in newborns and infants with less synergy in adults and elders. Overall, combination adjuvant systems demonstrate markedly different immune activation with age, with combined DC activation via Macrophage-inducible C-type lectin and TLR7/8 representing a novel approach to enhance the efficacy of early-life vaccines.
Collaboration
Dive into the David J. Dowling's collaboration.
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputs