David J. Eve
University of South Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David J. Eve.
Cell Transplantation | 2011
Paul R. Sanberg; David J. Eve; Alison E. Willing; Svitlana Garbuzova-Davis; Jun Tan; Cyndy D. Sanberg; Julie G. Allickson; L. Eduardo Cruz; Cesar V. Borlongan
Stem cell transplantation is a potentially important means of treatment for a number of disorders. Two different stem cell populations of interest are mononuclear umbilical cord blood cells and menstrual blood-derived stem cells. These cells are relatively easy to obtain, appear to be pluripotent, and are immunologically immature. These cells, particularly umbilical cord blood cells, have been studied as either single or multiple injections in a number of animal models of neurodegenerative disorders with some degree of success, including stroke, Alzheimers disease, amyotrophic lateral sclerosis, and Sanfilippo syndrome type B. Evidence of anti-inflammatory effects and secretion of specific cytokines and growth factors that promote cell survival, rather than cell replacement, have been detected in both transplanted cells.
Stem Cells and Development | 2010
Dong Hyuk Park; David J. Eve; Paul R. Sanberg; James Musso; Adam D. Bachstetter; Alan Wolfson; Andrea Schlunk; Marc Olivier Baradez; John Sinden; Carmelina Gemma
It is now well accepted that the brain is able to generate newborn neurons from a population of resident multipotential neural stem cells (NSCs) located in two discrete regions of the brain. The capacity for neurogenesis appears to diminish over the lifespan of an organism. Methods to potentiate the proliferation of new neuronal or glial cells within the central nervous system from resident NSCs could have therapeutic potential following an insult, such as stroke, or to replace lost cells as a result of a neurodegenerative disease. We implanted cells from a human NSC cell line, CTX0E03, originally derived from fetal cortical tissue directly into the ventricles of aged rats. CTX0E03 cells have angiogenic properties via secretion of growth factors, so we investigated if the implanted cells would stimulate proliferation of NSCs within the subgranular zone (SGZ) of the dentate gyrus. Bromodeoxyuridine staining demonstrated significantly increased proliferation in the SGZ. Absence of double labeling for human nuclear antigen suggested that the increased proliferation was from endogenous neural progenitor cells. The acute treatment also led to an increased number of immature neurons as demonstrated by immunohistochemical staining for the immature neuronal marker doublecortin. The data suggest that implants of exogenous NSCs may promote regeneration in aging organisms through stimulation of endogenous neurogenesis.
PLOS ONE | 2012
Svitlana Garbuzova-Davis; Maria Carolina de Oliveira Rodrigues; Santhia Mirtyl; Shanna Turner; Shazia Mitha; Jasmine Sodhi; Subatha Suthakaran; David J. Eve; Cyndy D. Sanberg; Nicole Kuzmin-Nichols; Paul R. Sanberg
Background A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25×106 cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages. Methodology/Principal Findings Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 106 or 2.5×106 cells from 13 weeks of age. A third, pre-symptomatic, group received 106 cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 106 cells pre-symptomatically or 2.5×106 cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups. Conclusions/Significance These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies.
Stem Cells and Development | 2009
Dong-HyukPark; David J. Eve; JamesMusso; Stephen K. Klasko; EduardoCruz; Cesario V. Borlongan; Paul R. Sanberg
Current treatments of neurological disorders such as Parkinsons disease and stroke are only partially effective. Consequently new therapies such as cell transplantation are of great interest. Cell therapy has shown promising results in animal models and in limited clinical trials. This form of treatment does have its own concerns, such as what factors control the survival and/or migration of the transplanted cells and how do they exert their benefit. Recent studies on tracking the transplants, such as prelabeling of the cells prior to transplant, and those elucidating the role of chemokines, as well as microglial and inflammatory responses, that may initiate the movement and survival of these cells are discussed in this review. A better understanding of these mechanism-driven pathways of neural repair will facilitate the clinical application of cell therapy for neurological disorders.
British Medical Bulletin | 2012
Paul R. Sanberg; David J. Eve; L. Eduardo Cruz; Cesar V. Borlongan
Introduction Neurological disorders are routinely characterized by loss of cells in response to an injury or a progressive insult. Stem cells could therefore be useful to treat these disorders. Sources of data Pubmed searches of recent literature. Areas of agreement Stem cells exhibit proliferative capacity making them ideally suited for replacing dying cells. However, instead of cell replacement therapy stem cell transplants frequently appear to work via neurotrophic factor release, immunomodulation and upregulation of endogenous stem cells. Areas of controversy and areas timely for developing research Many questions remain with respect to the use of stem cells as a therapy, the answers to which will vary depending on the disorder to be treated and mode of action. Whereas the potential tumorigenic capability of stem cells is a concern, most studies do not support this notion. Further determination of the optimal cell type, and whether to perform allogeneic or autologous transplants warrant investigation before the full potential of stem cells can be realized. In addition, the use of stem cells to develop disease models should not be overlooked.
Brain Research Bulletin | 2007
Piotr Walczak; Ning Chen; David J. Eve; Jennifer E. Hudson; Tanja Zigova; Juan Sanchez-Ramos; Paul R. Sanberg; Cyndy D. Sanberg; Alison E. Willing
The use of stem cells and other cells as therapies is still in its infancy. One major setback is the limited survival of the grafts, possibly due to immune rejection. Studies were therefore performed with human umbilical cord blood cells (HUCB) to determine the ability of these cells to survive in vivo and the effect of the immune response on their survival by transplantation into the normal striatum of immunodeficient NOD SCID mice. Long-term culture of HUCB cells resulted in several different populations of cells, including one that possessed fine processes and cell bodies that resembled neurons. Their neuronal phenotype was confirmed by immunohistochemical staining for the early neuronal marker TuJ1 and the potentially neural marker Nestin. Five days after cell transplantation of this neuronal phenotype, immunohistochemical staining for human mitochondria confirmed the presence of living HUCB cells in the mouse striatum, with cells localized at the site of injection, expressing early neural and neuronal markers (Nestin and TuJ1) as well as exhibiting neuronal morphology. However, no evidence of surviving cells was apparent 1 month postgrafting. The absence of signs of T cell-mediated rejection, such as CD4 and CD8 lymphocytes and minimal changes in microglia and astrocytes, suggest that cell loss was not due to a T cell-mediated immune response. In conclusion HUCB cells can survive long-term in vitro and undergo neuron-like differentiation. In mice, these cells do not survive a month. This may relate to the differentiated state of the cells transplanted into the unlesioned striatum, rather than T cell-mediated immunological rejection.
Brain Research | 2007
David J. Eve; John S. Dennis; Bruce A. Citron
The causes of spinal cord cell loss in motor neuron disorders such as amyotrophic lateral sclerosis (ALS) are currently unknown. A role can be postulated for the transcription factor p53, which can induce apoptosis via upregulation of proapoptotic genes (e.g., Bax) and inhibition of antiapoptotic genes (e.g., Bcl-2). A model of motor neuron loss is the wobbler mouse that exhibits rapid motor neuron cell death as well as motor deficit from 21 days after birth. Affymetrix microarray data from wobbler mice demonstrate a 2.2-fold increase in p53 signal compared with their normal littermates, whereas qRT-PCR of RNA from laser capture microdissected ventral horns of normal and wobbler mice reveals a larger 6.6-fold increase in gene expression and this was supported by western blotting. Human ventral horns obtained from ALS and age-matched normal spinal cords also demonstrated an increase (2.7-fold) in p53 expression as determined by qRT-PCR. Evidence of a causative role for p53 in spinal cord cell death was provided by use of a p53 inhibitor, pifithrin-alpha, in organotypic slice cultures of mouse spinal cord. A 24-h pretreatment with pifithrin-alpha (and continuing in the presence of insult), significantly reduced the toxicity of a 48-h treatment with FeSO(4), tested with the MTT viability assay. These results indicate that p53 plays a functional role in oxidative stress-induced cell death and supports the possibility that elevated p53 could be involved in motor neuron death in ALS and the wobbler mouse.
Journal of Cellular and Molecular Medicine | 2010
Jose N. Tolosa; Dong Hyuk Park; David J. Eve; Stephen K. Klasko; Cesario V. Borlongan; Paul R. Sanberg
• Introduction • Early haematopoiesis in foetus • Early versus late clamping of the umbilical cord • Stem cells in human umbilical cord blood ‐ Cellular composition ‐ Usefulness of umbilical cord blood stem cells • First stem cell transplantation at birth • Conclusions
The Scientific World Journal | 2010
Dong-Hyuk Park; David J. Eve; Yong-Gu Chung; Paul R. Sanberg
The annual meeting of the American Society for Neural Therapy and Repair (ASNTR) has always introduced us to top-notch and up-to-date approaches for regenerative medicine related to neuroscience, ranging from stem cell–based therapy to novel drugs. The 16th ASNTR meeting focused on a variety of different topics, including the unknown pathogenesis or mechanisms of specific neurodegenerative diseases, stem cell biology, and development of novel alternative medicines or devices. Newly developed stem cells, such as amniotic epithelial stem cells and induced pluripotent stem cells, as well as well-known traditional stem cells, such as neural, embryonic, bone marrow mesenchymal, and human umbilical cord blood–derived stem cells, were reported. A number of commercialized stem cells were also covered at this meeting. Fetal neural tissues, such as ventral mesencephalon, striatum, and Schwann cells, were investigated for neurodegenerative diseases or spinal cord injury. A number of studies focused on novel methods for drug monitoring or graft tracking, and combination therapy with stem cells and medicine, such as cytokines or trophic factors. Finally, the National Institutes of Health guidelines for human stem cell research, clinical trials of commercialized stem cells without larger animal testing, and prohibition of medical tourism were big controversial issues that led to heated discussion.
Progress in Brain Research | 2012
Paul R. Sanberg; David J. Eve; Christopher Metcalf; Cesario V. Borlongan
Considerable promise has been demonstrated by cell therapy for the treatment of stroke. Adult-derived stem cells avoid the ethical dilemmas of using embryonic and fetal stem cells and thus are the ideal type of cell to study. There are a number of different types of stem cells that could prove to be useful, but there are potential concerns associated with each one. This review summarizes the current knowledge on the use of the different possible adult-derived stem cell types including their benefits and challenges. While the optimal conditions are still to be determined, these cells may prove to be at the forefront of stem cell research and ultimately therapy for stroke and other disorders.