Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Goldhamer is active.

Publication


Featured researches published by David J. Goldhamer.


Journal of Bone and Joint Surgery, American Volume | 2009

Identification of progenitor cells that contribute to heterotopic skeletogenesis.

Vitali Y. Lounev; Michael N. Wosczyna; Masakazu Yamamoto; Andrew D. A. Maidment; Eileen M. Shore; David L. Glaser; David J. Goldhamer; Frederick S. Kaplan

BACKGROUND Individuals who have fibrodysplasia ossificans progressiva develop an ectopic skeleton because of genetic dysregulation of bone morphogenetic protein (BMP) signaling in the presence of inflammatory triggers. The identity of progenitor cells that contribute to various stages of BMP-induced heterotopic ossification relevant to fibrodysplasia ossificans progressiva and related disorders is unknown. An understanding of the cellular basis of heterotopic ossification will aid in the development of targeted, cell-specific therapies for the treatment and prevention of heterotopic ossification. METHODS We used Cre/loxP lineage tracing methods in the mouse to identify cell lineages that contribute to all stages of heterotopic ossification. Specific cell populations were permanently labeled by crossing lineage-specific Cre mice with the Cre-dependent reporter mice R26R and R26R-EYFP. Two mouse models were used to induce heterotopic ossification: (1) intramuscular injection of BMP2/Matrigel and (2) cardiotoxin-induced skeletal muscle injury in transgenic mice that misexpress BMP4 at the neuromuscular junction. The contribution of labeled cells to fibroproliferative lesions, cartilage, and bone was evaluated histologically by light and fluorescence microscopy. The cell types evaluated as possible progenitors included skeletal muscle stem cells (MyoD-Cre), endothelium and endothelial precursors (Tie2-Cre), and vascular smooth muscle (Smooth Muscle Myosin Heavy Chain-Cre [SMMHC-Cre]). RESULTS Vascular smooth muscle cells did not contribute to any stage of heterotopic ossification in either mouse model. Despite the osteogenic response of cultured skeletal myoblasts to BMPs, skeletal muscle precursors in vivo contributed minimally to heterotopic ossification (<5%), and this contribution was not increased by cardiotoxin injection, which induces muscle regeneration and mobilizes muscle stem cells. In contrast, cells that expressed the vascular endothelial marker Tie2/Tek at some time in their developmental history contributed robustly to the fibroproliferative, chondrogenic, and osteogenic stages of the evolving heterotopic endochondral anlagen. Importantly, endothelial markers were expressed by cells at all stages of heterotopic ossification. Finally, muscle injury and associated inflammation were sufficient to trigger fibrodysplasia ossificans progressiva-like heterotopic ossification in a setting of chronically stimulated BMP activity. CONCLUSIONS Tie2-expressing progenitor cells, which are endothelial precursors, respond to an inflammatory trigger, differentiate through an endochondral pathway, contribute to every stage of the heterotopic endochondral anlagen, and form heterotopic bone in response to overactive BMP signaling in animal models of fibrodysplasia ossificans progressiva. Thus, the ectopic skeleton is not only supplied by a rich vasculature, but appears to be constructed in part by cells of vascular origin. Further, these data strongly suggest that dysregulation of the BMP signaling pathway and an inflammatory microenvironment are both required for the formation of fibrodysplasia ossificans progressiva-like lesions.


Journal of Bone and Mineral Research | 2012

Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification.

Michael N. Wosczyna; Arpita A. Biswas; Catherine A. Cogswell; David J. Goldhamer

Heterotopic ossification is a debilitating condition that can result from traumatic injury, surgery, or genetic disease. We investigated the cellular origins of heterotopic skeletogenesis in the mouse using lineage tracing and bioassays of heterotopic ossification based on intramuscular transplantation. We identified, characterized, and purified a tissue‐resident stem/progenitor cell population that exhibits robust osteogenic potential and represents a major cell‐of‐origin for heterotopic ossification. These progenitors reside in the interstitium of skeletal muscle and other tissues, and are distinct from the endothelium, which does not exhibit osteogenic activity in response to bone morphogenetic protein 2 (BMP2) stimulation. Intramuscular transplantation, together with clonal analysis in culture, revealed that these progenitors are multipotent, exhibiting the capacity for both BMP‐dependent skeletogenic differentiation and spontaneous adipogenic differentiation. Identifying the cells‐of‐origin responsible for heterotopic ossification provides a potential therapeutic target to treat, mitigate, or prevent this disabling condition.


Reproductive Biology and Endocrinology | 2003

Skeletal muscle stem cells

Jennifer Chen; David J. Goldhamer

Satellite cells are myogenic stem cells responsible for the post-natal growth, repair and maintenance of skeletal muscle. This review focuses on the basic biology of the satellite cell with emphasis on its role in muscle repair and parallels between embryonic myogenesis and muscle regeneration. Recent advances have altered the long-standing view of the satellite cell as a committed myogenic stem cell derived directly from the fetal myoblast. The experimental basis for this evolving perspective will be highlighted as will the relationship between the satellite cell and other newly discovered muscle stem cell populations. Finally, advances and prospects for cell-based therapies for muscular dystrophies will be addressed.


Developmental Biology | 2009

Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD

Onur Kanisicak; Julio J. Mendez; Shoko Yamamoto; Masakazu Yamamoto; David J. Goldhamer

Satellite cells are tissue-specific stem cells responsible for skeletal muscle growth and regeneration. Although satellite cells were identified almost 50 years ago, the identity of progenitor populations from which they derive remains controversial. We developed MyoD(iCre) knockin mice, and used Cre/lox lineage analysis to determine whether satellite cell progenitors express MyoD, a marker of myogenic commitment. Recombination status of satellite cells was determined by confocal microscopy of isolated muscle fibers and by electron microscopic observation of muscle tissue fixed immediately following isolation, using R26R-EYFP and R26R (beta-gal) reporter mice, respectively. We show that essentially all adult satellite cells associated with limb and body wall musculature, as well as the diaphragm and extraocular muscles, originate from MyoD+ progenitors. Neonatal satellite cells were Cre-recombined, but only a small minority exhibited ongoing Cre expression, indicating that most satellite cells had expressed MyoD prenatally. We also show that satellite cell development in MyoD-null mice is not due to functional compensation by MyoD non-expressing lineages. The results suggest that satellite cells are derived from committed myogenic progenitors, irrespective of the anatomical location, embryological origin, or physiological properties of associated musculature.


The Journal of Neuroscience | 2012

Survival Motor Neuron Protein in Motor Neurons Determines Synaptic Integrity in Spinal Muscular Atrophy

Tara Martinez; Lingling Kong; Xueyong Wang; Melissa Osborne; Melissa E. Crowder; James P. Van Meerbeke; Xixi Xu; Crystal Davis; Joe Wooley; David J. Goldhamer; Cathleen Lutz; Mark M. Rich; Charlotte J. Sumner

The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.


Cell | 2010

Nfix Regulates Fetal-Specific Transcription in Developing Skeletal Muscle

Graziella Messina; Stefano Biressi; Stefania Monteverde; Alessandro Magli; Marco Cassano; Laura Perani; Elena Roncaglia; Enrico Tagliafico; Linda M. Starnes; Christine E. Campbell; Milena Grossi; David J. Goldhamer; Richard M. Gronostajski; Giulio Cossu

Skeletal myogenesis, like hematopoiesis, occurs in successive developmental stages that involve different cell populations and expression of different genes. We show here that the transcription factor nuclear factor one X (Nfix), whose expression is activated by Pax7 in fetal muscle, in turn activates the transcription of fetal specific genes such as MCK and beta-enolase while repressing embryonic genes such as slow myosin. In the case of the MCK promoter, Nfix forms a complex with PKC theta that binds, phosphorylates, and activates MEF2A. Premature expression of Nfix activates fetal and suppresses embryonic genes in embryonic muscle, whereas muscle-specific ablation of Nfix prevents fetal and maintains embryonic gene expression in the fetus. Therefore, Nfix acts as a transcriptional switch from embryonic to fetal myogenesis.


Genesis | 2009

A multifunctional reporter mouse line for Cre‐ and FLP‐dependent lineage analysis

Masakazu Yamamoto; Nicole Shook; Onur Kanisicak; Shoko Yamamoto; Michael N. Wosczyna; James Robert Camp; David J. Goldhamer

The Cre/lox and FLP/FRT recombination systems have been used extensively for both conditional knockout and cell lineage analysis in mice. Here we report a new multifunctional Cre/FLP dual reporter allele (R26NZG) that exhibits strong and apparently ubiquitous marker expression in embryos and adults. The reporter construct, which is driven by the CAG promoter, was knocked into the ROSA26 locus providing an open chromatin domain for consistent expression and avoiding site‐of‐integration effects often observed with transgenic reporters. R26NZG directs Cre‐dependent nuclear‐localized β‐galactosidase (β‐gal) expression, and can be converted into a Cre‐dependent EGFP reporter (R26NG) by germline excision of the FRT‐flanked nlslacZ cassette. Alternatively, germline excision of the floxed PGKNEO cassette in R26NZG generates an FLP‐dependent EGFP reporter (R26ZG) that expresses β‐gal in FLP‐nonexpressing cells. Finally, by the simultaneous use of both Cre and FLP deleters, R26NZG allows lineage relationships to be interrogated with greater refinement than is possible with single recombinase reporter systems. genesis 47:107–114, 2009.


Journal of Histochemistry and Cytochemistry | 2011

Skeletal Muscle Satellite Cells Are Committed to Myogenesis and Do Not Spontaneously Adopt Nonmyogenic Fates

Jessica D. Starkey; Masakazu Yamamoto; Shoko Yamamoto; David J. Goldhamer

The developmental potential of skeletal muscle stem cells (satellite cells) remains controversial. The authors investigated satellite cell developmental potential in single fiber and clonal cultures derived from MyoD iCre/+;R26R EYFP/+ muscle, in which essentially all satellite cells are permanently labeled. Approximately 60% of the clones derived from cells that co-purified with muscle fibers spontaneously underwent adipogenic differentiation. These adipocytes stained with Oil-Red-O and expressed the terminal differentiation markers, adipsin and fatty acid binding protein 4, but did not express EYFP and were therefore not of satellite cell origin. Satellite cells mutant for either MyoD or Myf-5 also maintained myogenic programming in culture and did not adopt an adipogenic fate. Incorporation of additional wash steps prior to muscle fiber plating virtually eliminated the non-myogenic cells but did not reduce the number of adherent Pax7+ satellite cells. More than half of the adipocytes observed in cultures from Tie2-Cre mice were recombined, further demonstrating a non-satellite cell origin. Under adipogenesis-inducing conditions, satellite cells accumulated cytoplasmic lipid but maintained myogenic protein expression and did not fully execute the adipogenic differentiation program, distinguishing them from adipocytes observed in muscle fiber cultures. The authors conclude that skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt an adipogenic fate.


Biochemistry and Cell Biology | 1998

MYOD AND MYF-5 DEFINE THE SPECIFICATION OF MUSCULATURE OF DISTINCT EMBRYONIC ORIGIN

Boris Kablar; Atsushi Asakura; Kirsten Krastel; Chuyan Ying; Linda L. May; David J. Goldhamer; Michael A. Rudnicki

Mounting evidence supports the notion that Myf-5 and MyoD play unique roles in the development of epaxial (originating in the dorso-medial half of the somite, e.g. back muscles) and hypaxial (originating in the ventro-lateral half of the somite, e.g. limb and body wall muscles) musculature. To further understand how Myf-5 and MyoD genes cooperate during skeletal muscle specification, we examined and compared the expression pattern of MyoD-lacZ (258/2.5lacZ and MD6.0-lacZ) transgenes in wild-type, Myf-5, and MyoD mutant embryos. We found that the delayed onset of muscle differentiation in the branchial arches, tongue, limbs, and diaphragm of MyoD-/- embryos was a consequence of a reduced ability of myogenic precursor cells to progress through their normal developmental program and not because of a defect in migration of muscle progenitor cells into these regions. We also found that myogenic precursor cells for back, intercostal, and abdominal wall musculature in Myf-54-/- embryos failed to undergo normal translocation or differentiation. By contrast, the myogenic precursors of intercostal and abdominal wall musculature in MyoD-/- embryos underwent normal translocation but failed to undergo timely differentiation. In conclusion, these observations strongly support the hypothesis that Myf-5 plays a unique role in the development of muscles arising after translocation of epithelial dermamyotome cells along the medial edge of the somite to the subjacent myotome (e.g., back or epaxial muscle) and that MyoD plays a unique role in the development of muscles arising from migratory precursor cells (e.g., limb and branchial arch muscles, tongue, and diaphragm). In addition, the expression pattern of MyoD-lacZ transgenes in the intercostal and abdominal wall muscles of Myf-5-/- and MyoD-/- embryos suggests that appropriate development of these muscles is dependent on both genes and, therefore, these muscles have a dual embryonic origin (epaxial and hypaxial).


Cell Metabolism | 2010

Sarcolemmal ATP-Sensitive K+ Channels Control Energy Expenditure Determining Body Weight

Alexey E. Alekseev; Santiago Reyes; Satsuki Yamada; Denice Marie Hodgson-Zingman; Srinivasan Sattiraju; Zhiyong Zhu; Ana Sierra; Marina Gerbin; William A. Coetzee; David J. Goldhamer; Andre Terzic; Leonid V. Zingman

Metabolic processes that regulate muscle energy use are major determinants of bodily energy balance. Here, we find that sarcolemmal ATP-sensitive K(+) (K(ATP)) channels, which couple membrane excitability with cellular metabolic pathways, set muscle energy expenditure under physiological stimuli. Disruption of K(ATP) channel function provoked, under conditions of unaltered locomotor activity and blood substrate availability, an extra energy cost of cardiac and skeletal muscle performance. Inefficient fuel metabolism in K(ATP) channel-deficient striated muscles reduced glycogen and fat body depots, promoting a lean phenotype. The propensity to lesser body weight imposed by K(ATP) channel deficit persisted under a high-fat diet, yet obesity restriction was achieved at the cost of compromised physical endurance. Thus, sarcolemmal K(ATP) channels govern muscle energy economy, and their downregulation in a tissue-specific manner could present an antiobesity strategy by rendering muscle increasingly thermogenic at rest and less fuel efficient during exercise.

Collaboration


Dive into the David J. Goldhamer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Chen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shoko Yamamoto

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles P. Emerson

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Onur Kanisicak

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge