Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Hartshorne is active.

Publication


Featured researches published by David J. Hartshorne.


Biochemical and Biophysical Research Communications | 1989

Calyculin A and okadaic acid: Inhibitors of protein phosphatase activity

H. Ishihara; Bruce L. Martin; David L. Brautigan; Hideaki Karaki; Hiroshi Ozaki; Yuko Kato; Nobuhiro Fusetani; Shugo Watabe; Kahoko Hashimoto; D. Uemura; David J. Hartshorne

Calyculin A and okadaic acid induce contraction in smooth muscle fibers. Okadaic acid is an inhibitor of phosphatase activity and the aims of this study were to determine if calyculin A also inhibits phosphatase and to screen effects of both compounds on various phosphatases. Neither compound inhibited acid or alkaline phosphatases, nor the phosphotyrosine protein phosphatase. Both compounds were potent inhibitors of the catalytic subunit of type-2A phosphatase, with IC50 values of 0.5 to 1 nM. With the catalytic subunit of protein phosphatase type-1, calyculin A was a more effective inhibitor than okadaic acid, IC50 values for calyculin A were about 2 nM and for okadaic acid between 60 and 500 nM. The endogenous phosphatase of smooth muscle myosin B was inhibited by both compounds with IC50 values of 0.3 to 0.7 nM and 15 to 70 nM, for calyculin A and okadaic acid, respectively. The partially purified catalytic subunit from myosin B had IC50 values of 0.7 and 200 nM for calyculin A and okadaic acid, respectively. The pattern of inhibition for the phosphatase in myosin B therefore is similar to that of the type-1 enzyme.


Journal of Biological Chemistry | 1999

Inhibitory Phosphorylation Site for Rho-associated Kinase on Smooth Muscle Myosin Phosphatase

Jianhua Feng; Masaaki Ito; Kazuhito Ichikawa; Naoki Isaka; Masakatsu Nishikawa; David J. Hartshorne; Takeshi Nakano

It is clear from several studies that myosin phosphatase (MP) can be inhibited via a pathway that involves RhoA. However, the mechanism of inhibition is not established. These studies were carried out to test the hypothesis that Rho-kinase (Rho-associated kinase) via phosphorylation of the myosin phosphatase target subunit 1 (MYPT1) inhibited MP activity and to identify relevant sites of phosphorylation. Phosphorylation by Rho-kinase inhibited MP activity and this reflected a decrease in V max. Activity of MP with different substrates also was inhibited by phosphorylation. Two major sites of phosphorylation on MYPT1 were Thr695 and Thr850. Various point mutations were designed for these phosphorylation sites. Following thiophosphorylation by Rho-kinase and assays of phosphatase activity it was determined that Thr695 was responsible for inhibition. A site- and phosphorylation-specific antibody was developed for the sequence flanking Thr695 and this recognized only phosphorylated Thr695 in both native and recombinant MYPT1. Using this antibody it was shown that stimulation of serum-starved Swiss 3T3 cells by lysophosphatidic acid, thought to activate RhoA pathways, induced an increase in Thr695 phosphorylation on MYPT1 and this effect was blocked by a Rho-kinase inhibitor, Y-27632. In summary, these results offer strong support for a physiological role of Rho-kinase in regulation of MP activity.


Journal of Muscle Research and Cell Motility | 1998

MYOSIN LIGHT CHAIN PHOSPHATASE : SUBUNIT COMPOSITION, INTERACTIONS AND REGULATION

David J. Hartshorne; Masaaki Ito; Ferenc Erdodi

This review has presented some of the recent data on myosin phosphatase from smooth muscle. Although it is not conclusive, it is likely that most of the myosin phosphatase activity is represented by a holoenzyme composed of three subunits. These are: a catalytic subunit of 38 kDa of the type 1 phosphatase, probably the delta isoform (i.e. PP1c delta); a subunit of about 20 kDa whose function is not established; and a larger subunit that is thought to act as a target subunit. This is termed the myosin phosphatase target subunit, MYPT. Various isoforms of MYPT exist and the relatively minor distinctions are in the C-terminal leucine zipper motifs and/or with inserts in the central region. Many regions of the molecule are highly conserved, including the ankyrin repeats in the N-terminal part of the molecule and the sequence around the phosphorylation site. In addition, these isoforms all contain the four residue PP1c-binding motif (Arg/Lys-Val/Ile-Xaa-Phe). MYPT has been detected in a variety of cells and thus is not unique to smooth muscle. With phosphorylated myosin as substrate, the phosphatase activity of PP1c is low and is enhanced on addition of MYPT. It is assumed that MYPT functions as a target subunit and binds to both PP1c and substrate. The N-terminal fragment of MYPT is responsible for the activation of PP1c activity, but how much of the N-terminal sequence is required is not established. An important point is that activation is not a general effect and is specific for myosin. It is not known if other substrates may be targeted to MYPT. There are two binding sites for PP1c on MYPT: a strong site in the N-terminal segment (containing the 4-residue motif) and a weaker site in the ankyrin repeats, possibly in repeats 5, 6 and 7. The location(s) of the myosin-binding sites on MYPT is controversial, and binding of myosin, or light chain, to both N- and C-terminal fragments has been reported. Regulation of myosin phosphatase activity involves changes in subunit interactions, although molecular mechanisms are not defined. There are basically two theories proposed for phosphatase inhibition (i.e. as seen in the agonist-induced increase in Ca2+ sensitivity). One hypothesis is that phosphorylation of Myosin light chain phosphatase MYPT (at residue 654 or 695 of the gizzard MYPT isoforms or an equivalent residue) inhibits the activity of the MP holoenzyme. The kinase involved is not established, but may be an unidentified endogenous kinase or a RhoA-activated kinase. The latter is an attractive possibility because there is convincing evidence that RhoA plays a crucial role in the Ca(2+)-sensitizing process in smooth muscle. A second idea involves arachidonic acid. This is released via phospholipase A2 and could either interact directly with MYPT and cause dissociation of the holoenzyme (thus effectively reducing the phosphatase activity to that of the isolated catalytic subunit), or it could activate a kinase that would phosphorylate MYPT and inhibit the phosphatase. It is possible that MP activity may also be activated, for example, following increases in cAMP and/or cGMP. Evidence in support of this is very limited and under in vivo conditions the phosphorylation of MYPT by the respective kinases has not been demonstrated. There is, however, a tentative hypothesis based on in vitro data that phosphorylation of MYPT by PKA alters its cellular localization. This involves a shuttle between the dephosphorylated membrane-bound and inhibited state (at least towards P-myosin) to a phosphorylated cytosolic or cytoskeletal, and active state. The pathway(s) discussed above originates at the cell membrane and is carried via one or more messengers to the level of the contractile apparatus where it is manifested by regulation of phosphatase activity. Various components of the route have been identified, including RhoA and the atypical PKC isoforms, but more remain to be discovered. It is possible that more than one pathway, or cascade, is


Molecular and Cellular Biochemistry | 2004

Myosin phosphatase: Structure, regulation and function

Masaaki Ito; Takeshi Nakano; Ferenc Erdodi; David J. Hartshorne

Phosphorylation of myosin II plays an important role in many cell functions, including smooth muscle contraction. The level of myosin II phosphorylation is determined by activities of myosin light chain kinase and myosin phosphatase (MP). MP is composed of 3 subunits: a catalytic subunit of type 1 phosphatase, PP1c; a targeting subunit, termed myosin phosphatase target subunit, MYPT; and a smaller subunit, M20, of unknown function. Most of the properties of MP are due to MYPT and include binding of PP1c and substrate. Other interactions are discussed. A recent discovery is the existence of an MYPT family and members include, MYPT1, MYPT2, MBS85, MYPT3 and TIMAP. Characteristics of each are outlined. An important discovery was that the activity of MP could be regulated and both activation and inhibition were reported. Activation occurs in response to elevated cyclic nucleotide levels and various mechanisms are presented. Inhibition of MP is a major component of Ca2+-sensitization in smooth muscle and various molecular mechanisms are discussed. Two mechanisms are cited frequently: (1) Phosphorylation of an inhibitory site on MYPT1, Thr696 (human isoform) and resulting inhibition of PP1c activity. Several kinases can phosphorylate Thr696, including Rho-kinase that serves an important role in smooth muscle function; and (2) Inhibition of MP by the protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17). Examples where these mechanisms are implicated in smooth muscle function are presented. The critical role of RhoA/Rho-kinase signaling in various systems is discussed, in particular those vascular smooth muscle disorders involving hypercontractility.


Biochemical and Biophysical Research Communications | 1990

HEPATOCYTE DEFORMATION INDUCED BY CYANOBACTERIAL TOXINS REFLECTS INHIBITION OF PROTEIN PHOSPHATASES

J. E. Eriksson; D. Toivola; Jussi Meriluoto; Hideaki Karaki; Y.-G. Han; David J. Hartshorne

The cyclic peptide hepatotoxins microcystin-LR, 7-desmethyl-microcystin-RR and nodularin are potent inhibitors of the protein phosphatases type 1 and type 2A. Their potency of inhibition resembles calyculin-A and to a lesser extent okadaic acid. These hepatotoxins increase the overall level of protein phosphorylation in hepatocytes. Evidence is presented to indicate that in hepatocytes the morphological changes and effects on the cytoskeleton are due to phosphatase inhibition. The potency of these compounds in inducing hepatocyte deformation is similar to their potency in inhibiting phosphatase activity. These results suggest that the hepatotoxicity of these peptides is related to inhibition of phosphatases, and further indicate the importance of the protein phosphorylation in maintenance of structural and homeostatic integrity in these cells.


Journal of Cell Biology | 2004

Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts

Go Totsukawa; Yue Wu; Yasuharu Sasaki; David J. Hartshorne; Yoshihiko Yamakita; Shigeko Yamashiro; Fumio Matsumura

We examined the role of regulatory myosin light chain (MLC) phosphorylation of myosin II in cell migration of fibroblasts. Myosin light chain kinase (MLCK) inhibition blocked MLC phosphorylation at the cell periphery, but not in the center. MLCK-inhibited cells did not assemble zyxin-containing adhesions at the periphery, but maintained focal adhesions in the center. They generated membrane protrusions all around the cell, turned more frequently, and migrated less effectively. In contrast, Rho-associated kinase (ROCK) inhibition blocked MLC phosphorylation in the center, but not at the periphery. ROCK-inhibited cells assembled zyxin-containing adhesions at the periphery, but not focal adhesions in the center. They moved faster and more straight. On the other hand, inhibition of myosin phosphatase increased MLC phosphorylation and blocked peripheral membrane ruffling, as well as turnover of focal adhesions and cell migration. Our results suggest that myosin II activated by MLCK at the cell periphery controls membrane ruffling, and that the spatial regulation of MLC phosphorylation plays critical roles in controlling cell migration of fibroblasts.


Circulation Research | 2003

Activation of RhoA and Inhibition of Myosin Phosphatase as Important Components in Hypertension in Vascular Smooth Muscle

Tetsuya Seko; Masaaki Ito; Yasuko Kureishi; Ryuji Okamoto; Nobuyuki Moriki; Katsuya Onishi; Naoki Isaka; David J. Hartshorne; Takeshi Nakano

Abstract— Two mechanisms are proposed to account for the inhibition of myosin phosphatase (MP) involved in Ca2+ sensitization of vascular muscle, ie, phosphorylation of either MYPT1, a target subunit of MP or CPI-17, an inhibitory phosphoprotein. In cultured vascular aorta smooth muscle cells (VSMCs), stimulation with angiotensin II activated RhoA, and this was blocked by pretreatment with 8-bromo-cGMP. VSMCs stimulated by angiotensin II, endothelin-1, or U-46619 significantly increased the phosphorylation levels of both MYPT1 (at Thr696) and CPI-17 (at Thr38). The angiotensin II-induced phosphorylation of MYPT1 was completely blocked by 8-bromo-cGMP or Y-27632 (a Rho-kinase inhibitor), but not by GF109203X (a PKC inhibitor). In contrast, phosphorylation of CPI-17 was inhibited only by GF109203X. Y-27632 dramatically corrected the hypertension in N&ohgr;-nitro-l-arginine methyl ester (L-NAME)-treated rats, and this hypertension also was sensitive to isosorbide mononitrate. The level of the active form of RhoA was significantly higher in aortas from L-NAME-treated rats. Expression of RhoA, Rho-kinase, MYPT1, CPI-17, and myosin light chain kinase were not significantly different in aortas from L-NAME-treated and control rats. Activation of RhoA without changes in levels of other signaling molecules were observed in three other rat models of hypertension, ie, stroke-prone spontaneously hypertensive rats, renal hypertensive rats, and DOCA-salt rats. These results suggest that independent of the cause of hypertension, a common point in downstream signaling and a critical component of hypertension is activation of RhoA and subsequent activation of Rho-kinase.


Journal of Biological Chemistry | 1999

Rho-associated Kinase of Chicken Gizzard Smooth Muscle

Jianhua Feng; Masaaki Ito; Yasuko Kureishi; Kazuhito Ichikawa; Mutsuki Amano; Naoki Isaka; Katsuya Okawa; Akihiro Iwamatsu; Kozo Kaibuchi; David J. Hartshorne; Takeshi Nakano

Rho-associated kinase (Rho-kinase) from chicken gizzard smooth muscle was purified to apparent homogeneity (160 kDa on SDS-polyacrylamide gel electrophoresis) and identified as the ROKα isoform. Several substrates were phosphorylated. Rates with myosin phosphatase target subunit 1 (MYPT1), myosin, and the 20-kDa myosin light chain were higher than other substrates. Thiophosphorylation of MYPT1 inhibited myosin phosphatase activity. Phosphorylation of myosin at serine 19 increased actin-activated Mg+-ATPase activity, i.e. similar to myosin light chain kinase. Myosin phosphorylation was increased at higher ionic strengths, possibly by formation of 6 S myosin. Phosphorylation of the isolated light chain and myosin phosphatase was decreased by increasing ionic strength. Rho-kinase was stimulated 1.5–2-fold by guanosine 5′-O-3-(thio)triphosphate·RhoA, whereas limited tryptic hydrolysis caused a 5–6-fold activation, independent of RhoA. Several kinase inhibitors were screened and most effective were Y-27632, staurosporine, and H-89. Several lipids caused slight activation of Rho-kinase, but arachidonic acid (30–50 μm) induced a 5–6-fold activation, independent of RhoA. These results suggest that Rho-kinase of smooth muscle may be involved in the contractile process via phosphorylation of MYPT1 and myosin. Activation by arachidonic acid presents a possible regulatory mechanism for Rho-kinase.


FEBS Letters | 2000

Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase

Mutsumi Koyama; Masaaki Ito; Jianhua Feng; Tetsuya Seko; Katsuya Shiraki; Koujiro Takase; David J. Hartshorne; Takeshi Nakano

Phosphorylation of CPI‐17 by Rho‐associated kinase (Rho‐kinase) and its effect on myosin phosphatase (MP) activity were investigated. CPI‐17 was phosphorylated by Rho‐kinase to 0.92 mol of P/mol of CPI‐17 in vitro. The inhibitory phosphorylation site was Thr38 (as reported previously) and was identified using a point mutant of CPI‐17 and a phosphorylation state‐specific antibody. Phosphorylation by Rho‐kinase dramatically increased the inhibitory effect of CPI‐17 on MP activity. Thus, CPI‐17 as a substrate of Rho‐kinase could be involved in the Ca2+ sensitization of smooth muscle contraction as a downstream effector of Rho‐kinase.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Identification of the endogenous smooth muscle myosin phosphatase-associated kinase

Justin A. MacDonald; Meredith A. Borman; Andrea Murányi; Avril V. Somlyo; David J. Hartshorne; Timothy A. J. Haystead

Ca2+ sensitization of smooth muscle contraction involves inhibition of myosin light chain phosphatase (SMPP-1M) and enhanced myosin light chain phosphorylation. Inhibition of SMPP-1M is modulated through phosphorylation of the myosin targeting subunit (MYPT1) by either Rho-associated kinase (ROK) or an unknown SMPP-1M-associated kinase. Activated ROK is predominantly membrane-associated and its putative substrate, SMPP-1M, is mainly myofibrillar-associated. This raises a conundrum about the mechanism of interaction between these enzymes. We present ZIP-like kinase, identified by “mixed-peptide” Edman sequencing after affinity purification, as the previously unidentified SMPP-1M-associated kinase. ZIP-like kinase was shown to associate with MYPT1 and phosphorylate the inhibitory site in intact smooth muscle. Phosphorylation of ZIP-like kinase was associated with an increase in kinase activity during carbachol stimulation, suggesting that the enzyme may be a terminal member of a Ca2+ sensitizing kinase cascade.

Collaboration


Dive into the David J. Hartshorne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferenc Erdodi

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marion J. Siegman

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas M. Butler

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge