Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Mahoney is active.

Publication


Featured researches published by David J. Mahoney.


Development | 2004

PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization

Antonietta Salustri; Cecilia Garlanda; Emilio Hirsch; Marika De Acetis; Alessia Maccagno; Barbara Bottazzi; Andrea Doni; Antonio Bastone; Giovanna Mantovani; Paolo Beck Peccoz; Giovanni Salvatori; David J. Mahoney; Anthony J. Day; Gregorio Siracusa; Luigina Romani; Alberto Mantovani

PTX3 is a prototypic long pentraxin that plays a non-redundant role in innate immunity against selected pathogens and in female fertility. Here, we report that the infertility of Ptx3–/– mice is associated with severe abnormalities of the cumulus oophorus and failure of in vivo, but not in vitro, oocyte fertilization. PTX3 is produced by mouse cumulus cells during cumulus expansion and localizes in the matrix. PTX3 is expressed in the human cumulus oophorus as well. Cumuli from Ptx3–/– mice synthesize normal amounts of hyaluronan (HA), but are unable to organize it in a stable matrix. Exogenous PTX3 restores a normal cumulus phenotype. Incorporation in the matrix of inter-α-trypsin inhibitor is normal in Ptx3–/– cumuli. PTX3 does not interact directly with HA, but it binds the cumulus matrix hyaladherin tumor necrosis factor α-induced protein 6 (TNFAIP6, also known as TSG6) and thereby may form multimolecular complexes that can cross-link HA chains. Thus, PTX3 is a structural constituent of the cumulus oophorus extracellular matrix essential for female fertility.


Nature Structural & Molecular Biology | 2007

Structures of the Cd44-Hyaluronan Complex Provide Insight Into a Fundamental Carbohydrate-Protein Interaction.

Suneale Banerji; Alan J. Wright; Martin Noble; David J. Mahoney; Iain D. Campbell; Anthony J. Day; David G. Jackson

Regulation of transient interactions between cells and the ubiquitous matrix glycosaminoglycan hyaluronan is crucial to such fundamental processes as embryonic development and leukocyte homing. Cd44, the primary cell surface receptor for hyaluronan, binds ligand via a lectin-like fold termed the Link module, but only after appropriate functional activation. The molecular details of the Cd44-hyaluronan interaction and hence the structural basis for this activation are unknown. Here we present the first crystal structure of Cd44 complexed with hyaluronan. This reveals that the interaction with hyaluronan is dominated by shape and hydrogen-bonding complementarity and identifies two conformational forms of the receptor that differ in orientation of a crucial hyaluronan-binding residue (Arg45, equivalent to Arg41 in human CD44). Measurements by NMR indicate that the conformational transition can be induced by hyaluronan binding, providing further insight into possible mechanisms for regulation of Cd44.


Arthritis & Rheumatism | 2011

TSG-6 inhibits osteoclast activity via an autocrine mechanism and is functionally synergistic with osteoprotegerin

David J. Mahoney; Catherine Swales; N A Athanasou; Michele Bombardieri; Costantino Pitzalis; Karolina Kliskey; Mohammed Sharif; Anthony J. Day; Caroline M. Milner; A Sabokbar

OBJECTIVE TSG-6 (the product of tumor necrosis factor [TNF]-stimulated gene 6) has a potent inhibitory effect on RANKL-mediated bone erosion. The aim of this study was to compare the activity of TSG-6 with that of osteoprotegerin (OPG) and to investigate its role as an autocrine modulator of cytokine-mediated osteoclast formation/activation. We also determined TSG-6 expression in inflammatory joint disease. METHODS The effects of TSG-6, OPG, and the inflammation mediators TNFα, interleukin-1 (IL-1), and IL-6 on the formation of osteoclasts from peripheral blood mononuclear cells and synovial fluid (SF) macrophages were determined by tartrate-resistant acid phosphatase staining. Lacunar resorption and filamentous actin ring formation were measured as indicators of osteoclast activity. The amount of TSG-6 in culture media or SF was quantified by enzyme-linked immunosorbent assay, and expression of TSG-6 in synovial tissue was assessed by immunohistochemistry. RESULTS TSG-6 acted in synergy with OPG to inhibit RANKL-mediated bone resorption and was produced by osteoclast precursors and mature osteoclasts in response to TNFα, IL-1, and IL-6. Expression of TSG-6 correlated with inhibition of lacunar resorption; this effect was ameliorated by an anti-TSG-6 antibody. The level of TSG-6 protein was determined in SF from patients with various arthritides; it was highest in patients with inflammatory conditions such as rheumatoid arthritis, in which it correlated with the amount of TSG-6 immunostaining in the synovium. TSG-6 inhibited the activation but not the formation of osteoclasts from SF macrophages. CONCLUSION In the presence of inflammatory cytokines, osteoclasts produced TSG-6 at concentrations that are sufficient to inhibit lacunar resorption. This may represent an autocrine mechanism to limit the degree of bone erosion during joint inflammation.


Journal of Biological Chemistry | 2008

TSG-6 Regulates Bone Remodeling through Inhibition of Osteoblastogenesis and Osteoclast Activation

David J. Mahoney; Tariq Ali; Guillaume Mabilleau; Dafna Benayahu; Anna Plaas; Caroline M. Milner; Anthony J. Day; Afsaneh Sabokbar

TSG-6 is an inflammation-induced protein that is produced at pathological sites, including arthritic joints. In animal models of arthritis, TSG-6 protects against joint damage; this has been attributed to its inhibitory effects on neutrophil migration and plasmin activity. Here we investigated whether TSG-6 can directly influence bone erosion. Our data reveal that TSG-6 inhibits RANKL-induced osteoclast differentiation/activation from human and murine precursor cells, where elevated dentine erosion by osteoclasts derived from TSG-6-/- mice is consistent with the very severe arthritis seen in these animals. However, the long bones from unchallenged TSG-6-/- mice were found to have higher trabecular mass than controls, suggesting that in the absence of inflammation TSG-6 has a role in bone homeostasis; we have detected expression of the TSG-6 protein in the bone marrow of unchallenged wild type mice. Furthermore, we have observed that TSG-6 can inhibit bone morphogenetic protein-2 (BMP-2)-mediated osteoblast differentiation. Interaction analysis revealed that TSG-6 binds directly to RANKL and to BMP-2 (as well as other osteogenic BMPs but not BMP-3) via composite surfaces involving its Link and CUB modules. Consistent with this, the full-length protein is required for maximal inhibition of osteoblast differentiation and osteoclast activation, although the isolated Link module retains significant activity in the latter case. We hypothesize that TSG-6 has dual roles in bone remodeling; one protective, where it inhibits RANKL-induced bone erosion in inflammatory diseases such as arthritis, and the other homeostatic, where its interactions with BMP-2 and RANKL help to balance mineralization by osteoblasts and bone resorption by osteoclasts.


Journal of Biological Chemistry | 2007

Determining the Molecular Basis for the pH-dependent Interaction between the Link Module of Human TSG-6 and Hyaluronan

Charles D. Blundell; David J. Mahoney; Martin R. Cordell; Andrew Almond; Jan D. Kahmann; András Perczel; Jonathan Taylor; Iain D. Campbell; Anthony J. Day

TSG-6 is an inflammation-associated hyaluronan (HA)-binding protein that has anti-inflammatory and protective functions in arthritis and asthma as well as a critical role in mammalian ovulation. The interaction between TSG-6 and HA is pH-dependent, with a marked reduction in affinity on increasing the pH from 6.0 to 8.0. Here we have investigated the mechanism underlying this pH dependence using a combined approach of site-directed mutagenesis, NMR, isothermal titration calorimetry and microtiter plate assays. Analysis of single-site mutants of the TSG-6 Link module indicated that the loss in affinity above pH 6.0 is mediated by the change in ionization state of a histidine residue (His4) that is not within the HA-binding site. To understand this in molecular terms, the pH-dependent folding profile and the pKa values of charged residues within the Link module were determined using NMR. These data indicated that His4 makes a salt bridge to one side-chain oxygen atom of a buried aspartate residue (Asp89), whereas the other oxygen is simultaneously hydrogen-bonded to a key HA-binding residue (Tyr12). This molecular network transmits the change in ionization state of His4 to the HA-binding site, which explains the loss of affinity at high pH. In contrast, simulations of the pH affinity curves indicate that another histidine residue, His45, is largely responsible for the gain in affinity for HA between pH 3.5 and 6.0. The pH-dependent interaction of TSG-6 with HA (and other ligands) provides a means of differentially regulating the functional activity of this protein in different tissue microenvironments.


Journal of Biological Chemistry | 2014

A Refined Model for the TSG-6 LINK Module in Complex with Hyaluronan: use of Defined Oligosaccharides to Probe Structure and Function.

Victoria A. Higman; David C. Briggs; David J. Mahoney; Charles D. Blundell; Benedict M. Sattelle; Douglas P. Dyer; Dixy E. Green; Paul L. DeAngelis; Andrew Almond; Caroline M. Milner; Anthony J. Day

Background: The polysaccharide hyaluronan is organized through interactions with the protein TSG-6 during inflammation and ovulation. Results: NMR spectroscopy on TSG-6 in the presence of defined sugars provided restraints that allowed modeling of a refined hyaluronan/TSG-6 complex. Conclusion: TSG-6 binding causes bending of hyaluronan that explains its condensation of this polysaccharide. Significance: This provides novel structural insights into protein-hyaluronan interactions. Tumor necrosis factor-stimulated gene-6 (TSG-6) is an inflammation-associated hyaluronan (HA)-binding protein that contributes to remodeling of HA-rich extracellular matrices during inflammatory processes and ovulation. The HA-binding domain of TSG-6 consists solely of a Link module, making it a prototypical member of the superfamily of proteins that interacts with this high molecular weight polysaccharide composed of repeating disaccharides of d-glucuronic acid and N-acetyl-d-glucosamine (GlcNAc). Previously we modeled a complex of the TSG-6 Link module in association with an HA octasaccharide based on the structure of the domain in its HA-bound conformation. Here we have generated a refined model for a HA/Link module complex using novel restraints identified from NMR spectroscopy of the protein in the presence of 10 distinct HA oligosaccharides (from 4- to 8-mers); the model was then tested using unique sugar reagents, i.e. chondroitin/HA hybrid oligomers and an octasaccharide in which a single sugar ring was 13C-labeled. The HA chain was found to make more extensive contacts with the TSG-6 surface than thought previously, such that a d-glucuronic acid ring makes stacking and ionic interactions with a histidine and lysine, respectively. Importantly, this causes the HA to bend around two faces of the Link module (resembling the way that HA binds to CD44), potentially providing a mechanism for how TSG-6 can reorganize HA during inflammation. However, the HA-binding site defined here may not play a role in TSG-6-mediated transfer of heavy chains from inter-α-inhibitor onto HA, a process known to be essential for ovulation.


Journal of Immunological Methods | 2012

Hyaluronidase treatment of synovial fluid to improve assay precision for biomarker research using multiplex immunoassay platforms

C Jayadev; Raj Rout; A J Price; P A Hulley; David J. Mahoney

Synovial fluid (SF) is a difficult biological matrix to analyse due to its complex non-Newtonian nature. This can result in poor assay repeatability and potentially inefficient use of precious samples. This study assessed the impact of SF treatment by hyaluronidase and/or dilution on intra-assay precision using the Luminex and Meso Scale Discovery (MSD) multiplex platforms. SF was obtained from patients with knee osteoarthritis at the time of joint replacement surgery. Aliquots derived from the same sample were left untreated (neat), 2-fold diluted, 4-fold diluted or treated with 2mg/ml testicular hyaluronidase (with 2-fold dilution). Preparation methods were compared in a polysterene-bead Luminex 10-plex (N=16), magnetic-bead Luminex singleplex (N=7) and MSD 4-plex (N=7). Each method was assessed for coefficient of variation (CV) of replicate measurements, number of bead events (for Luminex assays) and dilution-adjusted analyte concentration. Percentage recovery was calculated for dilutions and HAse treatment. Hyaluronidase treatment significantly increased the number of wells with satisfactory bead events/region (95%) compared to neat (48%, p<0.001) in the polystyrene-bead Luminex assay, but the magnetic-bead Luminex assay achieved ≥50 bead events irrespective of treatment method. Hyaluronidase treatment resulted in lower intra-assay CVs for detectable ligands (group average CV<10%) than neat, 2-fold and 4-fold dilution (CV~25% for all, p<0.05) in both polystyrene- and magnetic-bead Luminex assays. In addition, measured sample concentrations were higher and recovery was poor (elevated) after hyaluronidase treatment. In the MSD 4-plex, within-group comparison of the intra-assay CV or concentration was not conclusively influenced by SF preparation. However, only hyaluronidase treatment resulted in CV<25% for all samples for TNF-α. There was no effect on analyte concentrations or recovery. Hyaluronidase treatment can improve intra-assay precision and assay signal of SF analysis by multiplex immunoassays and should be recommended for SF biomarker research, particularly using the Luminex platform.


Clinical Reviews in Allergy & Immunology | 2016

Non-Canonical (RANKL-Independent) Pathways of Osteoclast Differentiation and Their Role in Musculoskeletal Diseases

A Sabokbar; David J. Mahoney; F Hemingway; N A Athanasou

Osteoclasts are multinucleated cells derived from mononuclear phagocyte precursors (monocytes, macrophages); in the canonical pathway of osteoclastogenesis, these cells fuse and differentiate to form specialised bone-resorbing osteoclasts in the presence of receptor activator for nuclear factor kappa B ligand (RANKL). Non-canonical pathways of osteoclastogenesis have been described in which several cytokines and growth factors are able to substitute for RANKL. These humoral factors can generally be divided into those which, like RANKL, are tumour necrosis family (TNF) superfamily members and those which are not; the former include TNFα lymphotoxin exhibiting inducible expression and competing with herpes simplex virus glycoprotein D for herpesvirus entry mediator, a receptor expressed by T lymphocytes (LIGHT), a proliferation inducing ligand (APRIL) and B cell activating factor (BAFF); the latter include transforming growth factor beta (TGF-β), interleukin-6 (IL-6), IL-8, IL-11, nerve growth factor (NGF), insulin-like growth factor-I (IGF-I) and IGF-II. This review summarises the evidence for these RANKL substitutes in inducing osteoclast differentiation from tissue-derived and circulating mononuclear phagocytes. It also assesses the role these factors are likely to play in promoting the pathological bone resorption seen in many inflammatory and neoplastic lesions of bone and joint including rheumatoid arthritis, aseptic implant loosening and primary and secondary tumours of bone.


In: Kennedy JF, Phillips GO, Williams PA and Hascall VC, editor(s). Hyaluronan, volume 1. Woodhead Publishing Ltd., Abington, Cambridge, UK; 2002. p. pp.161-172. | 2002

GETTING TO GRIPS WITH HA-PROTEIN INTERACTIONS

Charles D. Blundell; Jan D. Kahmann; András Perczel; David J. Mahoney; Martin R. Cordell; Peter Teriete; Iain D. Campbell; Anthony J. Day

ABSTRACT The interactions between HA and proteins are most commonly mediated by a domain termed a Link module. The Link module from human TSG-6, produced by expression in E. coli, has been used previously to determine its tertiary structure and identify the position of the HA-binding site by NMR spectroscopy in solution [1,2]. In addition, isothermal titration calorimetry (ITC) has been used to characterize the thermodynamics of this HA-protein interaction [2]. Microtitre plate assays have shown that the binding of the TSG-6 Link module to HA has a pH-dependency that is distinct from that of other hyaladherins; with maximal binding at pH 6.0 and a dramatic loss of function with increasing pH [3]. The NMR/ITC studies were carried out under low salt conditions (~2 mM NaCl), whereas the microtitre plate assays were performed in 100 mM NaCl. Here we show that the interaction of the TSG-6 Link module with HA8 is salt-strength dependent, involving the formation of 1 or 2 salt bridges. However, the structure of the Link module, its folding and the position of the HA-binding surface are the same in the absence and presence of NaCl. Therefore, results from the microtitre plate assays and NMR/ITC studies are comparable. The unusual pH-dependency of the HA interaction is probably mediated by the change of ionization state of one or more histidine residues, the pKa values of which are relatively unaffected by salt.


World Journal of Experimental Medicine | 2017

Role of LIGHT in the pathogenesis of joint destruction in rheumatoid arthritis.

A Sabokbar; Sara Afrough; David J. Mahoney; Yoshinobu Uchihara; Catherine Swales; Nicholas A. Athanasou

AIM To characterise the role of substitutes for receptor-activator nuclear factor kappa-B ligand (RANKL) in rheumatoid arthritis (RA) joint destruction. METHODS Synovial fluid (SF) macrophages isolated from the knee joint of RA patients were incubated with 25 ng/mL macrophage-colony stimulating factor (M-CSF) and 50 ng/mL LIGHT (lymphotoxin-like, exhibits inducible expression and competes with herpes simplex virus glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes) in the presence and absence of 25 ng/mL RANKL and 100 ng/mL osteoprotegerin (OPG) on glass coverslips and dentine slices. Osteoclastogenesis was assessed by the formation of multinucleated cells (MNCs) expressing tartrate-resistant acid phosphatase (TRAP) on coverslips and the extent of lacunar resorption pit formation on dentine slices. The concentration of LIGHT in RA and osteoarthritis (OA) synovial fluid was measured by an enzyme-linked immunosorbent assay (ELISA) and the expression of LIGHT in RA and OA synovium was determined by immunohistochemistry using an indirect immunoperoxidase technique. RESULTS In cultures of RA SF macrophages treated with LIGHT and M-CSF, there was significant formation of TRAP + MNCs on coverslips and extensive lacunar resorption pit formation on dentine slices. SF-macrophage-osteoclast differentiation was not inhibited by the addition of OPG, a decoy receptor for RANKL. Resorption pits were smaller and less confluent than in RANKL-treated cultures but the overall percentage area of the dentine slice resorbed was comparable in LIGHT- and RANKL-treated cultures. LIGHT significantly stimulated RANKL-induced lacunar resorption compared with RA SF macrophages treated with either RANKL or LIGHT alone. LIGHT was strongly expressed by synovial lining cells, subintimal macrophages and endothelial cells in RA synovium and the concentration of LIGHT was much higher in RA compared with OA SF. CONCLUSION LIGHT is highly expressed in RA synovium and SF, stimulates RANKL-independent/dependent osteoclastogenesis from SF macrophages and may contribute to marginal erosion formation.

Collaboration


Dive into the David J. Mahoney's collaboration.

Top Co-Authors

Avatar

Anthony J. Day

Wellcome Trust Centre for Cell-Matrix Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N A Athanasou

Nuffield Orthopaedic Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Almond

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge