Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Marcinek is active.

Publication


Featured researches published by David J. Marcinek.


Circulation Research | 2011

Mitochondrial Oxidative Stress Mediates Angiotensin II–Induced Cardiac Hypertrophy and Gαq Overexpression–Induced Heart Failure

Dao Fu Dai; Simon C. Johnson; Jason J. Villarin; Michael T. Chin; Madeline Nieves-Cintrón; Tony Chen; David J. Marcinek; Gerald W. Dorn; Y. James Kang; Tomas A. Prolla; Luis F. Santana; Peter S. Rabinovitch

Rationale: Mitochondrial dysfunction has been implicated in several cardiovascular diseases; however, the roles of mitochondrial oxidative stress and DNA damage in hypertensive cardiomyopathy are not well understood. Objective: We evaluated the contribution of mitochondrial reactive oxygen species (ROS) to cardiac hypertrophy and failure by using genetic mouse models overexpressing catalase targeted to mitochondria and to peroxisomes. Methods and Results: Angiotensin II increases mitochondrial ROS in cardiomyocytes, concomitant with increased mitochondrial protein carbonyls, mitochondrial DNA deletions, increased autophagy and signaling for mitochondrial biogenesis in hearts of angiotensin II–treated mice. The causal role of mitochondrial ROS in angiotensin II–induced cardiomyopathy is shown by the observation that mice that overexpress catalase targeted to mitochondria, but not mice that overexpress wild-type peroxisomal catalase, are resistant to cardiac hypertrophy, fibrosis and mitochondrial damage induced by angiotensin II, as well as heart failure induced by overexpression of G&agr;q. Furthermore, primary damage to mitochondrial DNA, induced by zidovudine administration or homozygous mutation of mitochondrial polymerase &ggr;, is also shown to contribute directly to the development of cardiac hypertrophy, fibrosis and failure. Conclusions: These data indicate the critical role of mitochondrial ROS in cardiac hypertrophy and failure and support the potential use of mitochondrial-targeted antioxidants for prevention and treatment of hypertensive cardiomyopathy.


Cell Metabolism | 2008

Mice with Mitochondrial Complex I Deficiency Develop a Fatal Encephalomyopathy

Shane E. Kruse; William C. Watt; David J. Marcinek; Raj P. Kapur; Kenneth A. Schenkman; Richard D. Palmiter

To study effects of mitochondrial complex I (CI, NADH:ubiquinone oxidoreductase) deficiency, we inactivated the Ndufs4 gene, which encodes an 18 kDa subunit of the 45-protein CI complex. Although small, Ndufs4 knockout (KO) mice appeared healthy until approximately 5 weeks of age, when ataxic signs began, progressing to death at approximately 7 weeks. KO mice manifested encephalomyopathy including a retarded growth rate, lethargy, loss of motor skill, blindness, and elevated serum lactate. CI activity in submitochondrial particles from KO mice was undetectable by spectrophotometric assays. However, CI-driven oxygen consumption by intact tissue was about half that of controls. Native gel electrophoresis revealed reduced levels of intact CI. These data suggest that CI fails to assemble properly or is unstable without NDUFS4. KO muscle has normal morphology but low NADH dehydrogenase activity and subsarcolemmal aggregates of mitochondria. Nonetheless, total oxygen consumption and muscle ATP and phosphocreatine concentrations measured in vivo were within normal parameters.


Longevity & Healthspan | 2014

Mitochondrial oxidative stress in aging and healthspan

Dao Fu Dai; Ying Ann Chiao; David J. Marcinek; Hazel H. Szeto; Peter S. Rabinovitch

The free radical theory of aging proposes that reactive oxygen species (ROS)-induced accumulation of damage to cellular macromolecules is a primary driving force of aging and a major determinant of lifespan. Although this theory is one of the most popular explanations for the cause of aging, several experimental rodent models of antioxidant manipulation have failed to affect lifespan. Moreover, antioxidant supplementation clinical trials have been largely disappointing. The mitochondrial theory of aging specifies more particularly that mitochondria are both the primary sources of ROS and the primary targets of ROS damage. In addition to effects on lifespan and aging, mitochondrial ROS have been shown to play a central role in healthspan of many vital organ systems. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and dysfunction in aging and healthspan, including cardiac aging, age-dependent cardiovascular diseases, skeletal muscle aging, neurodegenerative diseases, insulin resistance and diabetes as well as age-related cancers. The crosstalk of mitochondrial ROS, redox, and other cellular signaling is briefly presented. Potential therapeutic strategies to improve mitochondrial function in aging and healthspan are reviewed, with a focus on mitochondrial protective drugs, such as the mitochondrial antioxidants MitoQ, SkQ1, and the mitochondrial protective peptide SS-31.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo

Catherine E. Amara; Eric G. Shankland; Sharon A. Jubrias; David J. Marcinek; Martin J. Kushmerick; Kevin E. Conley

Faster aging is predicted in more active tissues and animals because of greater reactive oxygen species generation. Yet age-related cell loss is greater in less active cell types, such as type II muscle fibers. Mitochondrial uncoupling has been proposed as a mechanism that reduces reactive oxygen species production and could account for this paradox between longevity and activity. We distinguished these hypotheses by using innovative optical and magnetic resonance spectroscopic methods applied to noninvasively measured ATP synthesis and O2 uptake in vivo in human muscle. Here we show that mitochondrial function is unchanged with age in mildly uncoupled tibialis anterior muscle (75% type I) despite a high respiratory rate in adults. In contrast, substantial uncoupling and loss of cellular [ATP] indicative of mitochondrial dysfunction with age was found in the lower respiring and well coupled first dorsal interosseus (43–50% type II) of the same subjects. These results reject respiration rate as the sole factor impacting the tempo of cellular aging. Instead, they support mild uncoupling as a mechanism protecting mitochondrial function and contributing to the paradoxical longevity of the most active muscle fibers.


Aging Cell | 2010

Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria.

Dao Fu Dai; Tony Chen; Jonathan Wanagat; Michael A. Laflamme; David J. Marcinek; Mary J. Emond; Calvin P. Ngo; Tomas A. Prolla; Peter S. Rabinovitch

Mitochondrial defects have been found in aging and several age‐related diseases. Mice with a homozygous mutation in the exonuclease encoding domain of mitochondrial DNA polymerase gamma (Polgm/m) are prone to age‐dependent accumulation of mitochondrial DNA mutations and have shown a broad spectrum of aging‐like phenotypes. However, the mechanism of cardiac phenotypes in relation to the role of mitochondrial DNA mutations and oxidative stress in this mouse model has not been fully addressed. We demonstrate age‐dependent cardiomyopathy in Polgm/m mice, which by 13–14 months of age displays marked cardiac hypertrophy and dilatation, impairment of systolic and diastolic function, and increased cardiac fibrosis. This age‐dependent cardiomyopathy is associated with increases in mitochondrial DNA (mtDNA) deletions and protein oxidative damage, increased expression of apoptotic and senescence markers, as well as a decline in signaling for mitochondrial biogenesis. The relationship of these changes to mitochondrial reactive oxygen species (ROS) was tested by crossing Polgm/m mice with mice that overexpress mitochondrial targeted catalase (mCAT). All of the above phenotypes were partially rescued in Polgm/m/mCAT mice. These data indicate that accumulation of mitochondrial DNA damage with age can lead to cardiomyopathy and that this phenotype is partly mediated by mitochondrial oxidative stress.


The Journal of Physiology | 2005

Reduced mitochondrial coupling in vivo alters cellular energetics in aged mouse skeletal muscle

David J. Marcinek; Kenneth A. Schenkman; Wayne A. Ciesielski; Donghoon Lee; Kevin E. Conley

The mitochondrial theory of ageing proposes that the accumulation of oxidative damage to mitochondria leads to mitochondrial dysfunction and tissue degeneration with age. However, no consensus has emerged regarding the effects of ageing on mitochondrial function, particularly for mitochondrial coupling (P/O). One of the main barriers to a better understanding of the effects of ageing on coupling has been the lack of in vivo approaches to measure P/O. We use optical and magnetic resonance spectroscopy to independently quantify mitochondrial ATP synthesis and O2 uptake to determine in vivo P/O. Resting ATP demand (equal to ATP synthesis) was lower in the skeletal muscle of 30‐month‐old C57Bl/6 mice compared to 7‐month‐old controls (21.9 ± 1.5 versus 13.6 ± 1.7 nmol ATP (g tissue)−1 s−1, P= 0.01). In contrast, there was no difference in the resting rates of O2 uptake between the groups (5.4 ± 0.6 versus 8.4 ± 1.6 nmol O2 (g tissue)−1 s−1). These results indicate a nearly 50% reduction in the mitochondrial P/O in the aged animals (2.05 ± 0.07 versus 1.05 ± 0.36, P= 0.02). The higher resting ADP (30.8 ± 6.8 versus 58.0 ± 9.5 μmol g−1, P= 0.05) and decreased energy charge (ATP/ADP) (274 ± 70 versus 84 ± 16, P= 0.03) in the aged mice is consistent with an impairment of oxidative ATP synthesis. Despite the reduced P/O, uncoupling protein 3 protein levels were not different in the muscles of the two groups. These results demonstrate reduced mitochondrial coupling in aged skeletal muscle that alters cellular metabolism and energetics.


Current Opinion in Clinical Nutrition and Metabolic Care | 2007

Mitochondrial dysfunction and age.

Kevin E. Conley; David J. Marcinek; Jason J. Villarin

Purpose of reviewMitochondrial dysfunction is commonly thought to result from oxidative damage that leads to defects in the electron transport chain (ETC). In this review, we highlight new research indicating that there are early changes in mitochondrial function that precede ETC defects and are reversible thereby providing the possibility of slowing the tempo of mitochondrial aging and cell death. Recent findingsIncreased mitochondrial uncoupling – reduced adenosine triphosphate (ATP) produced per O2 uptake – and cell ATP depletion are evident in human muscle nearly a decade before accumulation of irreversible DNA damage that causes ETC defects. New evidence points to reduction in activators of biogenesis (e.g. PGC-1α) and to degradation of mitochondria allowing accumulation of molecular and membrane damage in aged mitochondria. The early dysfunction appears to be reversible based on improved mitochondrial function in vivo and elevated gene expression levels after exercise training. SummaryNew molecular and in vivo findings regarding the onset and reversibility of mitochondrial dysfunction with age indicate the potential: 1) for diagnostic tools to identify patients at risk for severe irreversible defects later in life; and 2) of an intervention to delay the tempo of aging and improve the quality of life of the elderly.


Aging Cell | 2013

Mitochondrial‐targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice

Michael P. Siegel; Shane E. Kruse; Justin M. Percival; Jorming Goh; Collin C. White; Heather Hopkins; Terrance J. Kavanagh; Hazel H. Szeto; Peter S. Rabinovitch; David J. Marcinek

Mitochondrial dysfunction plays a key pathogenic role in aging skeletal muscle resulting in significant healthcare costs in the developed world. However, there is no pharmacologic treatment to rapidly reverse mitochondrial deficits in the elderly. Here, we demonstrate that a single treatment with the mitochondrial‐targeted peptide SS‐31 restores in vivo mitochondrial energetics to young levels in aged mice after only one hour. Young (5 month old) and old (27 month old) mice were injected intraperitoneally with either saline or 3 mg kg−1 of SS‐31. Skeletal muscle mitochondrial energetics were measured in vivo one hour after injection using a unique combination of optical and 31P magnetic resonance spectroscopy. Age‐related declines in resting and maximal mitochondrial ATP production, coupling of oxidative phosphorylation (P/O), and cell energy state (PCr/ATP) were rapidly reversed after SS‐31 treatment, while SS‐31 had no observable effect on young muscle. These effects of SS‐31 on mitochondrial energetics in aged muscle were also associated with a more reduced glutathione redox status and lower mitochondrial H2O2 emission. Skeletal muscle of aged mice was more fatigue resistant in situ one hour after SS‐31 treatment, and eight days of SS‐31 treatment led to increased whole‐animal endurance capacity. These data demonstrate that SS‐31 represents a new strategy for reversing age‐related deficits in skeletal muscle with potential for translation into human use.


Experimental Physiology | 2007

Mitochondrial function, fibre types and ageing: new insights from human muscle in vivo

Kevin E. Conley; Catherine E. Amara; Sharon A. Jubrias; David J. Marcinek

Mitochondrial changes are at the centre of a wide range of maladies, including diabetes, neurodegeneration and ageing‐related dysfunctions. Here we describe innovative optical and magnetic resonance spectroscopic methods that non‐invasively measure key mitochondrial fluxes, ATP synthesis and O2 uptake, to permit the determination of mitochondrial coupling efficiency in vivo (P/O: half the ratio of ATP flux to O2 uptake). Three new insights result. First, mitochondrial coupling can be measured in vivo with the rigor of a biochemical determination and provides a gold standard to define well‐coupled mitochondria (P/O ≈ 2.5). Second, mitochondrial coupling differs substantially among muscles in healthy adults, from values reflective of well‐coupled oxidative phosphorylation in a hand muscle (P/O = 2.7) to mild uncoupling in a leg muscle (P/O = 2.0). Third, these coupling differences have an important impact on cell ageing. We found substantial uncoupling and loss of cellular [ATP] in a hand muscle indicative of mitochondrial dysfunction with age. In contrast, stable mitochondrial function was found in a leg muscle, which supports the notion that mild uncoupling is protective against mitochondrial damage with age. Thus, greater mitochondrial dysfunction is evident in muscles with higher type II muscle fibre content, which may be at the root of the preferential loss of type II fibres found in the elderly. Our results demonstrate that mitochondrial function and the tempo of ageing varies among human muscles in the same individual. These technical advances, in combination with the range of mitochondrial properties available in human muscles, provide an ideal system for studying mitochondrial function in normal tissue and the link between mitochondrial defects and cell pathology in disease.


Human Molecular Genetics | 2013

Defects in mitochondrial localization and ATP synthesis in the mdx mouse model of Duchenne muscular dystrophy are not alleviated by PDE5 inhibition

Justin M. Percival; Michael P. Siegel; Gary Knowels; David J. Marcinek

Given the crucial roles for mitochondria in ATP energy supply, Ca(2+) handling and cell death, mitochondrial dysfunction has long been suspected to be an important pathogenic feature in Duchenne muscular dystrophy (DMD). Despite this foresight, mitochondrial function in dystrophin-deficient muscles has remained poorly defined and unknown in vivo. Here, we used the mdx mouse model of DMD and non-invasive spectroscopy to determine the impact of dystrophin-deficiency on skeletal muscle mitochondrial localization and oxidative phosphorylation function in vivo. Mdx mitochondria exhibited significant uncoupling of oxidative phosphorylation (reduced P/O) and a reduction in maximal ATP synthesis capacity that together decreased intramuscular ATP levels. Uncoupling was not driven by increased UCP3 or ANT1 expression. Dystrophin was required to maintain subsarcolemmal mitochondria (SSM) pool density, implicating it in the spatial control of mitochondrial localization. Given that nitric oxide-cGMP pathways regulate mitochondria and that sildenafil-mediated phosphodiesterase 5 inhibition ameliorates dystrophic pathology, we tested whether sildenafils benefits result from decreased mitochondrial dysfunction in mdx mice. Unexpectedly, sildenafil treatment did not affect mitochondrial content or oxidative phosphorylation defects in mdx mice. Rather, PDE5 inhibition decreased resting levels of ATP, phosphocreatine and myoglobin, suggesting that sildenafil improves dystrophic pathology through other mechanisms. Overall, these data indicate that dystrophin-deficiency disrupts SSM localization, promotes mitochondrial inefficiency and restricts maximal mitochondrial ATP-generating capacity. Together these defects decrease intramuscular ATP and the ability of mdx muscle mitochondria to meet ATP demand. These findings further understanding of how mitochondrial bioenergetic dysfunction contributes to disease pathogenesis in dystrophin-deficient skeletal muscle in vivo.

Collaboration


Dive into the David J. Marcinek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shane E. Kruse

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Knowels

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge