David J. McGee
LSU Health Sciences Center Shreveport
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David J. McGee.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Alain P. Gobert; David J. McGee; Mahmood Akhtar; George L. Mendz; Jamie C. Newton; Yulan Cheng; Harry L. T. Mobley; Keith T. Wilson
The antimicrobial effect of nitric oxide (NO) is an essential part of innate immunity. The vigorous host response to the human gastric pathogen Helicobacter pylori fails to eradicate the organism, despite up-regulation of inducible NO synthase (iNOS) in the gastric mucosa. Here we report that wild-type strains of H. pylori inhibit NO production by activated macrophages at physiologic concentrations of l-arginine, the common substrate for iNOS and arginase. Inactivation of the gene rocF, encoding constitutively expressed arginase in H. pylori, restored high-output NO production by macrophages. By using HPLC analysis, we show that l-arginine is effectively consumed in the culture medium by wild-type but not arginase-deficient H. pylori. The substantially higher levels of NO generated by macrophages cocultured with rocF-deficient H. pylori resulted in efficient killing of the bacteria, whereas wild-type H. pylori exhibited no loss of survival under these conditions. Killing of the arginase-deficient H. pylori was NO-dependent, because peritoneal macrophages from iNOS−/− mice failed to affect the survival of the rocF mutant. Thus, bacterial arginase allows H. pylori to evade the immune response by down-regulating eukaryotic NO production.
Journal of Immunology | 2004
Jovanny Zabaleta; David J. McGee; Arnold H. Zea; Claudia Hernandez; Paulo C. Rodriguez; Rosa A. Sierra; Pelayo Correa; Augusto C. Ochoa
Helicobacter pylori infects approximately half the human population. The outcomes of the infection range from gastritis to gastric cancer and appear to be associated with the immunity to H. pylori. Patients developing nonatrophic gastritis present a Th1 response without developing protective immunity, suggesting that this bacterium may have mechanisms to evade the immune response of the host. Several H. pylori proteins can impair macrophage and T cell function in vitro through mechanisms that are poorly understood. We tested the effect of H. pylori extracts and live H. pylori on Jurkat cells and freshly isolated human normal T lymphocytes to identify possible mechanisms by which the bacteria might impair T cell function. Jurkat cells or activated T lymphocytes cultured with an H. pylori sonicate had a reduced proliferation that was not caused by T cell apoptosis or impairment in the early T cell signaling events. Instead, both the H. pylori sonicate and live H. pylori induced a decreased expression of the CD3ζ-chain of the TCR. Coculture of live H. pylori with T cells demonstrated that the wild-type strain, but not the arginase mutant rocF(−), depleted l-arginine and caused a decrease in CD3ζ expression. Furthermore, arginase inhibitors reversed these events. These results suggest that H. pylori arginase is not only important for urea production, but may also impair T cell function during infection.
Infection and Immunity | 2005
David J. McGee; Melanie L. Langford; Emily L. Watson; J. Elliot Carter; Yu-Ting Chen; Karen M. Ottemann
ABSTRACT Helicobacter pylori causes disease in the human stomach and in mouse and gerbil stomach models. Previous results have shown that motility is critical for H. pylori to colonize mice, gerbils, and other animal models. The role of chemotaxis, however, in colonization and disease is less well understood. Two genes in the H. pylori chemotaxis pathway, cheY and tlpB, which encode the chemotaxis response regulator and a methyl-accepting chemoreceptor, respectively, were disrupted. The cheY mutation was complemented with a wild-type copy of cheY inserted into the chromosomal rdxA gene. The cheY mutant lost chemotaxis but retained motility, while all other strains were motile and chemotactic in vitro. These strains were inoculated into gerbils either alone or in combination with the wild-type strain, and colonization and inflammation were assessed. While the cheY mutant completely failed to colonize gerbil stomachs, the tlpB mutant colonized at levels similar to those of the wild type. With the tlpB mutant, there was a substantial decrease in inflammation in the gerbil stomach compared to that with the wild type. Furthermore, there were differences in the numbers of each immune cell in the tlpB-mutant-infected stomach: the ratio of lymphocytes to neutrophils was about 8 to 1 in the wild type but only about 1 to 1 in the mutant. These results suggest that the TlpB chemoreceptor plays an important role in the inflammatory response while the CheY chemotaxis regulator plays a critical role in initial colonization. Chemotaxis mutants may provide new insights into the steps involved in H. pylori pathogenesis.
Infection and Immunity | 2007
Susan M. Williams; Yu-Ting Chen; Tessa M. Andermann; J. Elliot Carter; David J. McGee; Karen M. Ottemann
ABSTRACT The ulcer-causing pathogen Helicobacter pylori uses directed motility, or chemotaxis, to both colonize the stomach and promote disease development. Previous work showed that mutants lacking the TlpB chemoreceptor, one of the receptors predicted to drive chemotaxis, led to less inflammation in the gerbil stomach than did the wild type. Here we expanded these findings and examined the effects on inflammation of completely nonchemotactic mutants and mutants lacking each chemoreceptor. Of note, all mutants colonized mice to the same levels as did wild-type H. pylori. Infection by completely nonchemotactic mutants (cheW or cheY) resulted in significantly less inflammation after both 3 and 6 months of infection. Mutants lacking either the TlpA or TlpB H. pylori chemotaxis receptors also had alterations in inflammation severity, while mutants lacking either of the other two chemoreceptors (TlpC and HylB) behaved like the wild type. Fully nonchemotactic and chemoreceptor mutants adhered to cultured gastric epithelial cells and caused cellular release of the chemokine interleukin-8 in vitro similar to the release caused by the wild type. The situation appeared to be different in the stomach. Using silver-stained histological sections, we found that nonchemotactic cheY or cheW mutants were less likely than the wild type to be intimately associated with the cells of the gastric mucosa, although there was not a strict correlation between intimate association and inflammation. Because others have shown that in vivo adherence promotes inflammation, we propose a model in which H. pylori uses chemotaxis to guide it to a productive interaction with the stomach epithelium.
Journal of Clinical Microbiology | 2001
Traci L. Testerman; David J. McGee; Harry L. T. Mobley
ABSTRACT Obstacles continue to hinder in vitro studies of the gastric human pathogen Helicobacter pylori, including difficulty culturing the organism in the absence of serum or blood, rapid loss of viability following exponential growth due to autolysis, and the necessity for using high starting inocula. We demonstrate thatH. pylori grows in the chemically defined broth medium Hams F-12 nutrient mixture (F-12) in the absence of fetal bovine serum (FBS); this represents a breakthrough for studies in which serum components or proteins interfere with interpretation of results. Cultures can be continually passaged in fresh, FBS-free F-12 medium at an initial inoculum of only ∼103 CFU/ml. AllH. pylori strains (n = 21), including fresh clinical isolates, grew in serum-free F-12. H. pylori grew poorly in the related medium, F-10, unless additional zinc was supplied. Enhanced growth of H. pylori in F-12 broth was obtained by addition of bovine serum albumin (BSA) (1 mg/ml), β-cyclodextrin (200 μg/ml), or cholesterol (50 μg/ml). H. pylori also grew in several simplified versions of F-12 broth lacking glucose and most vitamins but containing hypoxanthine, pyruvate, and all 20 amino acids. On F-12 medium solidified with agar, H. pylori only grew when BSA (98% pure; 1 mg/ml), cholesterol (50 μg/ml), β-cyclodextrin (200 μg/ml), or FBS (2 to 4%) was added; addition of urea and phenol allowed colorimetric detection of urease activity. Thus, F-12 agar plus cholesterol or β-cyclodextrin represents the first transparent chemically defined agar and the first urease indicator agar forH. pylori. Several lines of evidence suggested that BSA itself is not responsible for H. pylori growth enhancement in F-12 containing BSA or FBS. Taken together, these innovations represent significant advances in the cultivation and recovery of H. pylori using chemically defined media. Use of F-12 or its derivatives may lead to improved understanding ofH. pylori metabolism, virulence factors, and transmission, and result in improved recovery and identification ofH. pylori from clinical specimens.
Infection and Immunity | 2002
Kylie J. Nolan; David J. McGee; Hazel M. Mitchell; Tassia Kolesnikow; Janette M. Harro; Jani O'Rourke; John Wilson; Stephen J. Danon; Nathan D. Moss; Harry L. T. Mobley; Adrian Lee
ABSTRACT Helicobacter pylori mutants devoid of urease activity fail to colonize the gastric mucosa of mice; however, the effect of decreased levels of urease on colonization has not been examined. The nixA gene, required for full urease activity, encodes a cytoplasmic membrane nickel transporter that imports nickel ions and leads to incorporation of nickel ions into apourease. A nixA mutant of the Sydney strain of H. pylori (SS1) was constructed by disruption of the nixA gene with a kanamycin resistance cassette. This mutant retained only half the urease activity of the wild-type (wild-type) SS1 strain. C57BL/6j (n = 75) and BALB/c (n = 75) mice were inoculated independently with the wild-type or the nixA strain. The level and distribution of colonization were assessed by bacterial colony counts and histological grading at 4, 12, and 24 weeks postinfection. Colonization levels of the nixA strain in BALB/c mice were significantly lower compared with SS1 (P = 0.005), while colonization in C57BL/6j mice was similar for both the wild-type and mutant strains. Subtle differences in colonization of the different regions of the stomach, determined by microscopic grading, were observed between wild-type SS1 and the nixA strain in BALB/c mice. On the contrary, when C57BL/6j (n = 35) and BALB/c (n = 35) mice were coinfected with the wild-type and nixA strains simultaneously, the nixA mutant failed to colonize and was outcompeted by the wild-type SS1 strain, which established normal levels of colonization. These results demonstrate the importance of the nixA gene for increasing the fitness of H. pylori for gastric colonization. Since nixA is required for full urease activity, the decreased fitness of the nixA mutant is likely due to reduced urease activity; however, pleiotropic effects of the mutation cannot be completely ruled out.
Infection and Immunity | 2011
Olga Senkovich; Jun Yin; Viktoriya Ekshyyan; Carolyn Conant; James Traylor; Patrick Adegboyega; David J. McGee; Robert E. Rhoads; Sergey V. Slepenkov; Traci L. Testerman
ABSTRACT Helicobacter pylori persistently colonizes humans, causing gastritis, ulcers, and gastric cancer. Adherence to the gastric epithelium has been shown to enhance inflammation, yet only a few H. pylori adhesins have been paired with targets in host tissue. The alpAB locus has been reported to encode adhesins involved in adherence to human gastric tissue. We report that abrogation of H. pylori AlpA and AlpB reduces binding of H. pylori to laminin while expression of plasmid-borne alpA or alpB confers laminin-binding ability to Escherichia coli. An H. pylori strain lacking only AlpB is also deficient in laminin binding. Thus, we conclude that both AlpA and AlpB contribute to H. pylori laminin binding. Contrary to expectations, the H. pylori SS1 mutant deficient in AlpA and AlpB causes more severe inflammation than the isogenic wild-type strain in gerbils. Identification of laminin as the target of AlpA and AlpB will facilitate future investigations of host-pathogen interactions occurring during H. pylori infection.
Journal of Clinical Microbiology | 2006
Traci L. Testerman; P. Brian Conn; Harry L. T. Mobley; David J. McGee
ABSTRACT The growth of the gastric pathogen Helicobacter pylori in the absence of serum remains challenging, and nutritional requirements have only partially been defined, while almost nothing is known about nutritional requirements of other Helicobacter spp. Although previous data showed that H. pylori grows in the chemically defined medium F-12, but not in other tissue culture media examined, the specific components responsible for growth were not entirely understood. Here we describe the optimization of amino acids, metals, and sodium chloride for H. pylori. Iron, zinc, and magnesium were critical for growth; copper was not required. Optimization of sodium chloride was further beneficial. Nutritional requirements and antibiotic resistance patterns of several other Helicobacter spp. revealed that all except H. felis grew in serum-free, unsupplemented F-12. All Helicobacter spp. were resistant to at least six antimicrobial agents when cultured in the presence of serum. However, in the absence of serum, H. pylori, H. mustelae, and H. muridarum became sensitive to polymyxin B and/or trimethoprim. Much of the data were obtained using a convenient ATP assay to quantify growth. H. pylori has surprisingly few absolute requirements for growth: 9 amino acids, sodium and potassium chloride, thiamine, iron, zinc, magnesium, hypoxanthine, and pyruvate. These data suggest that H. pylori and other Helicobacter spp. are not as fastidious as previously thought. The data also suggest that chemically defined media described herein could yield the growth of a wide range of Helicobacter spp., allowing a more detailed characterization of Helicobacter physiology and interactions with host cells.
Antimicrobial Agents and Chemotherapy | 2011
David J. McGee; Alika E. George; Elizabeth A. Trainor; Katherine E. Horton; Ellen Hildebrandt; Traci L. Testerman
ABSTRACT The human gastric pathogen Helicobacter pylori steals host cholesterol, modifies it by glycosylation, and incorporates the glycosylated cholesterol onto its surface via a cholesterol glucosyltransferase, encoded by cgt. The impact of cholesterol on H. pylori antimicrobial resistance is unknown. H. pylori strain 26695 was cultured in Hams F12 chemically defined medium in the presence or absence of cholesterol. The two cultures were subjected to overnight incubations with serial 2-fold dilutions of 12 antibiotics, six antifungals, and seven antimicrobial peptides (including LL-37 cathelicidin and human alpha and beta defensins). Of 25 agents tested, cholesterol-grown H. pylori cells were substantially more resistant (over 100-fold) to nine agents than were H. pylori cells grown without cholesterol. These nine agents included eight antibiotics and LL-37. H. pylori was susceptible to the antifungal drug pimaricin regardless of cholesterol presence in the culture medium. A cgt mutant retained cholesterol-dependent resistance to most antimicrobials but displayed increased susceptibility to colistin, suggesting an involvement of lipid A. Mutation of lpxE, encoding lipid A1-phosphatase, led to loss of cholesterol-dependent resistance to polymyxin B and colistin but not other antimicrobials tested. The cgt mutant was severely attenuated in gerbils, indicating that glycosylation is essential in vivo. These findings suggest that cholesterol plays a vital role in virulence and contributes to the intrinsic antibiotic resistance of H. pylori.
Infection and Immunity | 2001
Catherine S. Beckwith; David J. McGee; Harry L. T. Mobley; Lela K. Riley
ABSTRACT Helicobacter hepaticus causes disease in the liver and lower intestinal tract of mice. It is strongly urease positive, although it does not live in an acidic environment. The H. hepaticus urease gene cluster was expressed in Escherichia coli with and without coexpression of the Helicobacter pylori nickel transporter NixA. As for H. pylori, it was difficult to obtain enzymatic activity from recombinant H. hepaticus urease; special conditions including NiCl2supplementation were required. The H. hepaticus urease cluster contains a homolog of each gene in the H. pyloriurease cluster, including the urea transporter gene ureI. Downstream genes were homologs of the nik nickel transport operon of E. coli. Nongastric H. hepaticusproduces urease similar to that of H. pylori.