David J. Mead
Rocky Mountain Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David J. Mead.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Reynaldo A. Carabeo; David J. Mead; Ted Hackstadt
Cholesterol, a lipid not normally found in prokaryotes, was identified in purified Chlamydia trachomatis elementary bodies and in the chlamydial parasitophorous vacuole (inclusion) membrane of infected HeLa cells. Chlamydiae obtained eukaryotic host cell cholesterol both from de novo synthesis or low-density lipoprotein. Acquisition of either de novo-synthesized cholesterol or low-density lipoprotein-derived cholesterol was microtubule-dependent and brefeldin A-sensitive, indicating a requirement for the Golgi apparatus. Transport also required chlamydial protein synthesis, indicative of a pathogen-directed process. The cholesterol trafficking pathway appears to coincide with a previously characterized delivery of sphingomyelin to the inclusion in that similar pharmacological treatments inhibited transport of both sphingomyelin and cholesterol. These results support the hypothesis that sphingomyelin and cholesterol may be cotransported via a Golgi-dependent pathway and that the chlamydial inclusion receives cholesterol preferentially from a brefeldin A-sensitive pathway of cholesterol trafficking from the Golgi apparatus to the plasma membrane.
Journal of Bacteriology | 2004
Sherry A. Coleman; Elizabeth R. Fischer; Dale Howe; David J. Mead; Robert A. Heinzen
Coxiella burnetii undergoes a poorly defined developmental cycle that generates morphologically distinct small-cell variants (SCV) and large-cell variants (LCV). We developed a model to study C. burnetii morphogenesis that uses Vero cells synchronously infected with homogeneous SCV (Nine Mile strain in phase II) harvested from aged infected cell cultures. A time course transmission electron microscopic analysis over 8 days of intracellular growth was evaluated in conjunction with one-step growth curves to correlate morphological differentiations with growth cycle phase. Lag phase occurred during the first 2 days postinfection (p.i.) and was primarily composed of SCV-to-LCV morphogenesis. LCV forms predominated over the next 4 days, during which exponential growth was observed. Calculated generation times during exponential phase were 10.2 h (by quantitative PCR assay) and 11.7 h (by replating fluorescent focus-forming unit assay). Stationary phase began at approximately 6 days p.i. and coincided with the reappearance of SCV, which increased in number at 8 days p.i. Quantitative reverse transcriptase-PCR demonstrated maximal expression of scvA, which encodes an SCV-specific protein, at 8 days p.i., while immunogold transmission electron microscopy revealed degradation of ScvA throughout lag and exponential phases, with increased expression observed at the onset of stationary phase. Collectively, these results indicate that the overall growth cycle of C. burnetii is characteristic of a closed bacterial system and that the replicative form of the organism is the LCV. The experimental model described in this report will allow a global transcriptome and proteome analysis of C. burnetii developmental forms.
Molecular Microbiology | 2003
K. A. Fields; David J. Mead; Cheryl A. Dooley; Ted Hackstadt
The obligate intracellular bacterium Chlamydia trachomatis occupies a parasitophorous vacuole termed an inclusion. During its intracellular developmental cycle, C. trachomatis maintains this intracellular niche, presumably by expressing a type III secretion system, which deploys a set of host cell‐interactive proteins including inclusion membrane‐localized proteins termed Incs. Some Incs are expressed and secreted by 2 h (early cycle) after infection, whereas the expression of type III‐specific genes is not detectable until 6–12 h (mid‐cycle). To resolve this paradox, we investigated the presence of a type III apparatus on elementary bodies (EBs) that might function early in infection. We demonstrate the existence of the type III secretory apparatus by matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) and immunoblot analyses of purified EB extracts. Immunoblots using polyclonal antibodies specific for the core apparatus component CdsJ identified this protein in both EB and reticulate body (RB) extracts. Furthermore, CdsJ‐specific signals were detected by immunoblot of whole infected‐culture extracts and by indirect immunofluorescence of infected monolayers at times before the detection of cdsJ‐specific message. Finally, expression of IncC, expressed by 2 h after infection during C. trachomatis infections, in Yersinia pseudotuberculosis resulted in its secretion via the Yersinia type III apparatus. Based on these data, we propose a model in which type III secretion pores are present on EBs and mediate secretion of early Incs and possible additional effectors. Mid‐cycle expression of type III genes would then replenish secretion apparatus on vegetative RBs and serve as a source of secretion pores for subsequently formed EBs.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Travis J. Jewett; Elizabeth R. Fischer; David J. Mead; Ted Hackstadt
Chlamydia trachomatis entry into host cells results from a parasite-directed remodeling of the actin cytoskeleton. A type III secreted effector, TARP (translocated actin recruiting phosphoprotein), has been implicated in the recruitment of actin to the site of internalization. To elucidate the role of TARP in actin recruitment, we identified host cell proteins that associated with recombinant GST-TARP fusions. TARP directly associated with actin, and this interaction promoted actin nucleation as determined by in vitro polymerization assays. Domain analysis of TARP identified an actin-binding domain that bears structural and primary amino acid sequence similarity to WH2 domain family proteins. In addition, a proline-rich domain was found to promote TARP oligomerization and was required for TARP-dependent nucleation of new actin filaments. Our findings reveal a mechanism by which chlamydiae induce localized cytoskeletal changes by the translocated effector TARP during entry into host cells.
Journal of Bacteriology | 2005
Kenneth A. Fields; Elizabeth R. Fischer; David J. Mead; Ted Hackstadt
The obligate intracellular pathogen Chlamydia trachomatis expresses a type III secretion system (T3SS) which has the potential to contribute significantly to pathogenesis. Based on a demonstrated role of type III secretion (T3S)-specific chaperones in the secretion of antihost proteins by gram-negative pathogens, we initiated a study of selected putative Chlamydia T3S chaperones in an effort to gain mechanistic insight into the Chlamydia T3SS and to potentially identify Chlamydia-specific secreted products. C. trachomatis Scc2 and Scc3 are homologous to SycD of Yersinia spp. Functional studies of the heterologous Yersinia T3SS indicated that although neither Scc2 nor Scc3 was able to fully complement a sycD null mutant, both have SycD-like characteristics. Both were able to associate with the translocator protein YopD, and Scc3 expression restored limited secretion of YopD in in vitro studies of T3S. CopB (CT578) and CopB2 (CT861) are encoded adjacent to scc2 and scc3, respectively, and have structural similarities with the YopB family of T3S translocators. Either Scc2 or Scc3 coprecipitates with CopB from C. trachomatis extracts. Expression of CopB or CopB2 in Yersinia resulted in their type III-dependent secretion, and localization studies with C. trachomatis-infected cells indicated that both were secreted by Chlamydia.
Traffic | 2008
Elizabeth R. Moore; Elizabeth R. Fischer; David J. Mead; Ted Hackstadt
Chlamydiae replicate intracellularly within a unique vacuole termed the inclusion. The inclusion circumvents classical endosomal/lysosomal pathways but actively intercepts a subset of Golgi‐derived exocytic vesicles containing sphingomyelin (SM) and cholesterol. To further examine this interaction, we developed a polarized epithelial cell model to study vectoral trafficking of lipids and proteins to the inclusion. We examined seven epithelial cell lines for their ability to form single monolayers of polarized cells and support chlamydial development. Of these cell lines, polarized colonic mucosal C2BBe1 cells were readily infected with Chlamydia trachomatis and remained polarized throughout infection. Trafficking of (6‐((N‐(7‐nitrobenz‐2‐oxa‐1, 3‐diazol‐4‐yl) amino)hexanoyl)sphingosine) (NBD‐C6‐ceramide) and its metabolic derivatives, NBD‐glucosylceramide (GlcCer) and NBD‐SM, was analyzed. SM was retained within L2‐infected cells relative to mock‐infected cells, correlating with a disruption of basolateral SM trafficking. There was no net retention of GlcCer within L2‐infected cells and purification of C. trachomatis elementary bodies from polarized C2BBe1 cells confirmed that bacteria retained only SM. The chlamydial inclusion thus appears to preferentially intercept basolaterally‐directed SM‐containing exocytic vesicles, suggesting a divergence in SM and GlcCer trafficking. The observed changes in lipid trafficking were a chlamydia‐specific effect because Coxiella burnetii‐infected cells revealed no changes in GlcCer or SM polarized trafficking.
Infection and Immunity | 2007
Sherry A. Coleman; Elizabeth R. Fischer; Diane C. Cockrell; Daniel E. Voth; Dale Howe; David J. Mead; James E. Samuel; Robert A. Heinzen
ABSTRACT A biphasic developmental cycle whereby highly resistant small-cell variants (SCVs) are generated from large-cell variants (LCVs) is considered fundamental to the virulence of Coxiella burnetii, the causative agent of human Q fever. In this study a proteome analysis of C. burnetii developmental forms was conducted to provide insight into their unique biological and immunological properties. Silver-stained gels of SCV and LCV lysates separated by two-dimensional (2-D) gel electrophoresis resolved over 675 proteins in both developmental forms. Forty-eight proteins were greater than twofold more abundant in LCVs than in SCVs, with six proteins greater than twofold more abundant in SCVs than in LCVs. Four and 15 upregulated proteins of SCVs and LCVs, respectively, were identified by mass spectrometry, and their predicted functional roles are consistent with a metabolically active LCV and a structurally resistant SCV. One-dimensional and 2-D immunoblots of cell form lysates probed with sera from infected/vaccinated guinea pigs and convalescent-phase serum from human patients who had recovered from acute Q fever, respectively, revealed both unique SCV/LCV antigens and common SCV/LCV antigens that were often differentially synthesized. Antigens recognized during human infection were identified by mass spectroscopy and included both previously described immunodominant proteins of C. burnetii and novel immunogenic proteins that may be important in the pathophysiology of clinical Q fever and/or the induction of protective immunity.
Journal of Biological Chemistry | 1998
Ying Yuan; David J. Mead; Benjamin G. Schroeder; YaQi Zhu; Clifton E. Barry
A closely related family of enzymes fromMycobacterium tuberculosis has been shown by heterologous expression to catalyze the modification of mycolic acids through the addition of a methyl (or methylene) group derived fromS-adenosyl-l-methionine (SAM). Overproduction of all six of these enzymes in Escherichia coli and subsequent in vitro reactions with heat-inactivated acceptor fractions derived from Mycobacterium smegmatis in the presence of [methyl-3H]SAM demonstrated that the immediate substrate to which methyl group addition occurs was a family of very long-chain fatty acids. Inhibitors of methyl transfer, such as S-adenosyl-l-homocysteine and sinefungin, were shown to inhibit this reaction but had no effect on whole cells of either M. smegmatis or M. tuberculosis. Purified mycolic acids from M. tuberculosis were pyrolyzed, and the resulting meroaldehyde was oxidized and methylated to produce full-length methyl meromycolates. These esters were shown to comigrate with a fraction of the acceptor from the in vitro reactions, suggesting that methyl group addition occurs up to the level of the meromycolate. Protease and other treatments destroyed the activity of the acceptor fraction, which was also found to be extremely sensitive to basic pH. Antibody to the acyl carrier protein AcpM, which has recently been shown to be the carrier of full-length meromycolate produced by a unique type II fatty acid synthase system, inhibited the cell-free methyl(en)ation of these acids. These results suggest that mycolate modification reactions occur parallel with the synthesis of the AcpM-bound meromycolate chain.
Microbiology | 2011
Elizabeth R. Moore; David J. Mead; Cheryl A. Dooley; Janet Sager; Ted Hackstadt
Chlamydia trachomatis is an obligate intracellular pathogen that replicates within a parasitophorous vacuole termed an inclusion. The chlamydial inclusion is isolated from the endocytic pathway but fusogenic with Golgi-derived exocytic vesicles containing sphingomyelin and cholesterol. Sphingolipids are incorporated into the chlamydial cell wall and are considered essential for chlamydial development and viability. The mechanisms by which chlamydiae obtain eukaryotic lipids are poorly understood but require chlamydial protein synthesis and presumably modification of the inclusion membrane to initiate this interaction. A polarized cell model of chlamydial infection has demonstrated that chlamydiae preferentially intercept basolaterally directed, sphingomyelin-containing exocytic vesicles. Here we examine the localization and potential function of trans-Golgi and/or basolaterally associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in chlamydia-infected cells. The trans-Golgi SNARE protein syntaxin 6 is recruited to the chlamydial inclusion in a manner that requires chlamydial protein synthesis and is conserved among all chlamydial species examined. The localization of syntaxin 6 to the chlamydial inclusion requires a tyrosine motif or plasma membrane retrieval signal (YGRL). Thus in addition to expression of at least two inclusion membrane proteins that contain SNARE-like motifs, chlamydiae also actively recruit eukaryotic SNARE-family proteins.
Journal of Bacteriology | 2017
Nicholas F. Noriea; Tina R. Clark; David J. Mead; Ted Hackstadt
Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, contains two immunodominant proteins, rOmpA and rOmpB, in the outer membrane. Both rOmpA and rOmpB are conserved throughout spotted fever group rickettsiae as members of a family of autotransporter proteins. Previously, it was demonstrated that rOmpB is proteolytically processed, with the cleavage site residing near the autotransporter domain at the carboxy-terminal end of the protein, cleaving the 168-kDa precursor into apparent 120-kDa and 32-kDa fragments. The 120- and 32-kDa fragments remain noncovalently associated on the surface of the bacterium, with implications that the 32-kDa fragment functions as the membrane anchor domain. Here we present evidence for a similar posttranslational processing of rOmpA. rOmpA is expressed as a predicted 224-kDa precursor yet is observed on SDS-PAGE as a 190-kDa protein. A small rOmpA fragment of ∼32 kDa was discovered during surface proteome analysis and identified as the carboxy-terminal end of the protein. A rabbit polyclonal antibody was generated to the autotransporter region of rOmpA and confirmed a 32-kDa fragment corresponding to the calculated mass of a proteolytically cleaved rOmpA autotransporter region. N-terminal amino acid sequencing revealed a cleavage site on the carboxy-terminal side of Ser-1958 in rOmpA. An avirulent strain of R. rickettsii Iowa deficient in rOmpB processing was also defective in the processing of rOmpA. The similarities of the cleavage sites and the failure of R. rickettsii Iowa to process either rOmpA or rOmpB suggest that a single enzyme may be responsible for both processing events.IMPORTANCE Members of the spotted fever group of rickettsiae, including R. rickettsii, the etiologic agent of Rocky Mountain spotted fever, express at least four autotransporter proteins that are protective antigens or putative virulence determinants. One member of this class of proteins, rOmpB, is proteolytically processed to a passenger domain and an autotransporter domain that remain associated on the rickettsial outer membrane. The protease responsible for this posttranslation processing remains unknown. Here we show that another autotransporter, rOmpA, is similarly processed by R. rickettsii Similarities in sequence at the cleavage site and predicted secondary protein structure suggest that all four R. rickettsii autotransporters may be processed by the same outer membrane protease.