Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Saxby is active.

Publication


Featured researches published by David J. Saxby.


Gait & Posture | 2016

Tibiofemoral contact forces during walking, running and sidestepping

David J. Saxby; Luca Modenese; Adam L. Bryant; Pauline Gerus; Bryce Killen; Karine Fortin; Tim V. Wrigley; Kim L. Bennell; F. Cicuttini; David G. Lloyd

We explored the tibiofemoral contact forces and the relative contributions of muscles and external loads to those contact forces during various gait tasks. Second, we assessed the relationships between external gait measures and contact forces. A calibrated electromyography-driven neuromusculoskeletal model estimated the tibiofemoral contact forces during walking (1.44±0.22ms(-1)), running (4.38±0.42ms(-1)) and sidestepping (3.58±0.50ms(-1)) in healthy adults (n=60, 27.3±5.4years, 1.75±0.11m, and 69.8±14.0kg). Contact forces increased from walking (∼1-2.8 BW) to running (∼3-8 BW), sidestepping had largest maximum total (8.47±1.57 BW) and lateral contact forces (4.3±1.05 BW), while running had largest maximum medial contact forces (5.1±0.95 BW). Relative muscle contributions increased across gait tasks (up to 80-90% of medial contact forces), and peaked during running for lateral contact forces (∼90%). Knee adduction moment (KAM) had weak relationships with tibiofemoral contact forces (all R(2)<0.36) and the relationships were gait task-specific. Step-wise regression of multiple external gait measures strengthened relationships (0.20<Radj(2)<0.78), but were variable across gait tasks. Step-wise regression equations from a particular gait task (e.g. walking) produced large errors when applied to a different gait task (e.g. running or sidestepping). Muscles well stabilized the knee, increasing their role in stabilization from walking to running to sidestepping. KAM was a poor predictor of medial contact force and load distributions. Step-wise regression models results suggest the relationships between external gait measures and contact forces cannot be generalized across tasks. Neuromusculoskeletal modelling may be required to examine tibiofemoral contact forces and role of muscle in knee stabilization across gait tasks.


Medicine and Science in Sports and Exercise | 2016

Tibiofemoral Contact Forces in the Anterior Cruciate Ligament-Reconstructed Knee.

David J. Saxby; Adam L. Bryant; Luca Modenese; Pauline Gerus; Bryce Killen; Jason M. Konrath; Karine Fortin; Tim V. Wrigley; Kim L. Bennell; F. Cicuttini; Christopher J. Vertullo; Julian A. Feller; Timothy S. Whitehead; Price Gallie; David G. Lloyd

PURPOSE To investigate differences in anterior cruciate ligament-reconstructed (ACLR) and healthy individuals in terms of the magnitude of the tibiofemoral contact forces, as well as the relative muscle and external load contributions to those contact forces, during walking, running, and sidestepping gait tasks. METHODS A computational EMG-driven neuromusculoskeletal model was used to estimate the muscle and tibiofemoral contact forces in those with single-bundle combined semitendinosus and gracilis tendon autograft ACLR (n = 104, 29.7 ± 6.5 yr, 78.1 ± 14.4 kg) and healthy controls (n = 60, 27.5 ± 5.4 yr, 67.8 ± 14.0 kg) during walking (1.4 ± 0.2 m·s), running (4.5 ± 0.5 m·s) and sidestepping (3.7 ± 0.6 m·s). Within the computational model, the semitendinosus of ACLR participants was adjusted to account for literature reported strength deficits and morphological changes subsequent to autograft harvesting. RESULTS ACLR had smaller maximum total and medial tibiofemoral contact forces (~80% of control values, scaled to bodyweight) during the different gait tasks. Compared with controls, ACLR were found to have a smaller maximum knee flexion moment, which explained the smaller tibiofemoral contact forces. Similarly, compared with controls, ACLR had both a smaller maximum knee flexion angle and knee flexion excursion during running and sidestepping, which may have concentrated the articular contact forces to smaller areas within the tibiofemoral joint. Mean relative muscle and external load contributions to the tibiofemoral contact forces were not significantly different between ACLR and controls. CONCLUSIONS ACLR had lower bodyweight-scaled tibiofemoral contact forces during walking, running, and sidestepping, likely due to lower knee flexion moments and straighter knee during the different gait tasks. The relative contributions of muscles and external loads to the contact forces were equivalent between groups.


Osteoarthritis and Cartilage | 2017

Osteoarthritis year in review 2016: mechanics

David J. Saxby; David G. Lloyd

Inappropriate biomechanics, namely wear-and-tear, has been long believed to be a main cause of osteoarthritis (OA). However, this view is now being re-evaluated, especially when examined alongside mechanobiology and new biomechanical studies. These are multiscale experimental and computational studies focussing on cell- and tissue-level mechanobiology through to organ- and whole-body-level biomechanics, which focuses on the biomechanical and biochemical environment of the joint tissues. This review examined papers from April 2015 to April 2016, with a focus on multiscale experimental and computational biomechanical studies of OA. Assessing the onset or progression of OA at organ- and whole-body-levels, gait analysis, medical imaging and neuromusculoskeletal modelling revealed the extent to which tissue damage changes the view of inappropriate biomechanics. Traditional gait analyses studies reported that conservative treatments can alter joint biomechanics, thereby improving pain and function experienced by those with OA. Results of animal models of OA were consistent with these human studies, showing interactions among bone, cartilage and meniscus biomechanics and the onset and/or progression OA. Going down size scales, experimental and computational studies probed the nanosize biomechanics of molecules, cells and extracellular matrix, and demonstrated how the interactions between biomechanics and morphology affect cartilage dynamic poroelastic behaviour and pathways to OA. Finally, integration of multiscale experimental data and computational models were proposed to predict cartilage extracellular matrix remodelling and the development of OA. Summarising, experimental and computational methods provided a nuanced biomechanical understanding of the sub-cellular, cellular, tissue, organ and whole-body mechanisms involved in OA.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2017

Biofeedback for Gait Retraining Based on Real-Time Estimation of Tibiofemoral Joint Contact Forces

Claudio Pizzolato; Monica Reggiani; David J. Saxby; Elena Ceseracciu; Luca Modenese; David G. Lloyd

Biofeedback assisted rehabilitation and intervention technologies have the potential to modify clinically relevant biomechanics. Gait retraining has been used to reduce the knee adduction moment, a surrogate of medial tibiofemoral joint loading often used in knee osteoarthritis research. In this paper, we present an electromyogram-driven neuromusculoskeletal model of the lower-limb to estimate, in real-time, the tibiofemoral joint loads. The model included 34 musculotendon units spanning the hip, knee, and ankle joints. Full-body inverse kinematics, inverse dynamics, and musculotendon kinematics were solved in real-time from motion capture and force plate data to estimate the knee medial tibiofemoral contact force (MTFF). We analyzed five healthy subjects while they were walking on an instrumented treadmill with visual biofeedback of their MTFF. Each subject was asked to modify their gait in order to vary the magnitude of their MTFF. All subjects were able to increase their MTFF, whereas only three subjects could decrease it, and only after receiving verbal suggestions about possible gait modification strategies. Results indicate the important role of knee muscle activation patterns in modulating the MTFF. While this paper focused on the knee, the technology can be extended to examine the musculoskeletal tissue loads at different sites of the human body.


Frontiers in Computational Neuroscience | 2017

Bioinspired Technologies to Connect Musculoskeletal Mechanobiology to the Person for Training and Rehabilitation

Claudio Pizzolato; David G. Lloyd; Rod Barrett; Jill Cook; Ming H. Zheng; Thor F. Besier; David J. Saxby

Musculoskeletal tissues respond to optimal mechanical signals (e.g., strains) through anabolic adaptations, while mechanical signals above and below optimal levels cause tissue catabolism. If an individuals physical behavior could be altered to generate optimal mechanical signaling to musculoskeletal tissues, then targeted strengthening and/or repair would be possible. We propose new bioinspired technologies to provide real-time biofeedback of relevant mechanical signals to guide training and rehabilitation. In this review we provide a description of how wearable devices may be used in conjunction with computational rigid-body and continuum models of musculoskeletal tissues to produce real-time estimates of localized tissue stresses and strains. It is proposed that these bioinspired technologies will facilitate a new approach to physical training that promotes tissue strengthening and/or repair through optimal tissue loading.


PLOS ONE | 2017

Muscle contributions to medial tibiofemoral compartment contact loading following ACL reconstruction using semitendinosus and gracilis tendon grafts

Jason M. Konrath; David J. Saxby; Bryce Killen; Claudio Pizzolato; Christopher J. Vertullo; Rod Barrett; David G. Lloyd

Background The muscle-tendon properties of the semitendinosus (ST) and gracilis (GR) are substantially altered following tendon harvest for the purpose of anterior cruciate ligament reconstruction (ACLR). This study adopted a musculoskeletal modelling approach to determine how the changes to the ST and GR muscle-tendon properties alter their contribution to medial compartment contact loading within the tibiofemoral joint in post ACLR patients, and the extent to which other muscles compensate under the same external loading conditions during walking, running and sidestep cutting. Materials and methods Motion capture and electromyography (EMG) data from 16 lower extremity muscles were acquired during walking, running and cutting in 25 participants that had undergone an ACLR using a quadruple (ST+GR) hamstring auto-graft. An EMG-driven musculoskeletal model was used to estimate the medial compartment contact loads during the stance phase of each gait task. An adjusted model was then created by altering muscle-tendon properties for the ST and GR to reflect their reported changes following ACLR. Parameters for the other muscles in the model were calibrated to match the experimental joint moments. Results The medial compartment contact loads for the standard and adjusted models were similar. The combined contributions of ST and GR to medial compartment contact load in the adjusted model were reduced by 26%, 17% and 17% during walking, running and cutting, respectively. These deficits were balanced by increases in the contribution made by the semimembranosus muscle of 33% and 22% during running and cutting, respectively. Conclusion Alterations to the ST and GR muscle-tendon properties in ACLR patients resulted in reduced contribution to medial compartment contact loads during gait tasks, for which the semimembranosus muscle can compensate.


Gait & Posture | 2017

Reliability of functional and predictive methods to estimate the hip joint centre in human motion analysis in healthy adults

Hans Kainz; Martin Hajek; Luca Modenese; David J. Saxby; David G. Lloyd; Christopher P. Carty

In human motion analysis predictive or functional methods are used to estimate the location of the hip joint centre (HJC). It has been shown that the Harrington regression equations (HRE) and geometric sphere fit (GSF) method are the most accurate predictive and functional methods, respectively. To date, the comparative reliability of both approaches has not been assessed. The aims of this study were to (1) compare the reliability of the HRE and the GSF methods, (2) analyse the impact of the number of thigh markers used in the GSF method on the reliability, (3) evaluate how alterations to the movements that comprise the functional trials impact HJC estimations using the GSF method, and (4) assess the influence of the initial guess in the GSF method on the HJC estimation. Fourteen healthy adults were tested on two occasions using a three-dimensional motion capturing system. Skin surface marker positions were acquired while participants performed quite stance, perturbed and non-perturbed functional trials, and walking trials. Results showed that the HRE were more reliable in locating the HJC than the GSF method. However, comparison of inter-session hip kinematics during gait did not show any significant difference between the approaches. Different initial guesses in the GSF method did not result in significant differences in the final HJC location. The GSF method was sensitive to the functional trial performance and therefore it is important to standardize the functional trial performance to ensure a repeatable estimate of the HJC when using the GSF method.


Ergonomics | 2018

Integrating a hip belt with body armour reduces the magnitude and changes the location of shoulder pressure and perceived discomfort in soldiers

Gavin Lenton; Tim L.A. Doyle; David J. Saxby; Dan Billing; Jeremy Higgs; David G. Lloyd

Abstract Soldiers carry heavy loads that may cause general discomfort, shoulder pain and injury. This study assessed if new body armour designs that incorporated a hip belt reduced shoulder pressures and improved comfort. Twenty-one Australian soldiers completed treadmill walking trials wearing six different body armours with two different loads (15 and 30 kg). Contact pressures applied to the shoulders were measured using pressure pads, and qualitative assessment of comfort and usability were acquired from questionnaires administered after walking trials. Walking with hip belt compared to no hip belt armour resulted in decreased mean and maximum shoulder pressures (p < 0.005), and 30% fewer participants experiencing shoulder discomfort (p < 0.005) in best designs, although hip discomfort did increase. Laterally concentrated shoulder pressures were associated with 1.34-times greater likelihood of discomfort (p = 0.026). Results indicate body armour and backpack designs should integrate a hip belt and distribute load closer to shoulder midline to reduce load carriage discomfort and, potentially, injury risk. Practitioner Summary: Soldiers carry heavy loads that increase their risk of discomfort and injury. New body armour designs are thought to ease this burden by transferring the load to the hips. This study demonstrated that designs incorporating a hip belt reduced shoulder pressure and shoulder discomfort compared to the current armour design.


Scandinavian Journal of Medicine & Science in Sports | 2017

In vivo strain in the deep and superficial regions of the human patellar tendon.

D. Lee; Rod Barrett; M. Ryan; David J. Saxby; Richard Newsham-West; Steven J. Obst

This study investigated strain differences within the patellar tendon (PT) mid‐region using an ultrasound‐based digital image correlation (DIC) method. Six healthy young participants performed six knee extensions to 60% of maximal voluntary isometric contraction on 2 days. Sagittal ultrasound videos recorded during each contraction were analyzed using the DIC method to determine the strain–torque relationships of the superficial, deep, and whole PT mid‐regions. Significantly greater strain was observed in the deep vs superficial layer of the PT mid‐region for all contraction intensities, with peak strains of 5.8% (SD 1.7) and 4.5% (SD 1.5), respectively. DIC‐based measures of peak tendon strain were repeatable within [intraclass coefficients (ICC) >0.97] and between sessions (ICCs >0.83) and agreed well with the conventional point‐to‐point method. This study confirmed that significant differences exist between deep and superficial layers of PT mid‐region during ramped isometric extensions. These findings support the use of DIC to examine regional strain patterns within the PT mid‐region that may be important in the context of tendon injury and adaptation.


Gait & Posture | 2017

An alternative whole-body marker set to accurately and reliably quantify joint kinematics during load carriage☆

Gavin Lenton; Tim L.A. Doyle; David J. Saxby; David G. Lloyd

Body armor covers anatomical landmarks that would otherwise be used to track trunk and pelvis movement in motion analysis. This study developed and evaluated a new marker set, and compared it to placing markers on the skin and over-top of body armor. In our method, pelvis and trunk motions were measured using a custom-built sacral and upper-back marker cluster, respectively. Joint angles and ranges of motion were determined while participants walked without and with body armor. Angles were obtained from the new marker set and compared against conventional marker sets placed on the skin or over-top the body armor. Bland-Altman analyses compared the agreement of kinematic parameters between marker sets, while joint angle waveforms were compared using inter-protocol coefficient of multiple correlations (CMCs). The intra- and inter-session similarities of joint angle waveforms from each marker set were also assessed using CMCs. There was a strong agreement between joint angles from the new marker set and markers placed directly on the skin at key anatomical landmarks. The agreement worsened with markers placed on top of body armor. Inter-protocol CMCs comparing markers on body armor to the new marker set were poor compared to CMCs between skin-mounted markers and the new marker set. Intra- and inter-session repeatability were higher for the new marker set compared to placing markers over-top of body armor. The new marker set provides a viable alternative for researchers to reliably measure trunk and pelvis motion when equipment, such as body armor, obscures marker placement.

Collaboration


Dive into the David J. Saxby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Cicuttini

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

X. Wang

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge