David J. Siveter
University of Leicester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David J. Siveter.
Geology | 2004
Sarah E. Gabbott; Hou Xianguang; M. J. Norry; David J. Siveter
The Chengjiang biota of Yunnan, China, documents the earliest extensive radiation of the Metazoa recorded in the fossil record. Gauging preservational bias is crucial in providing an assessment of the completeness of this biota and thereby elucidating whether it represents a comprehensive depiction of Early Cambrian life. We here present a model to explain the nature of the exceptional preservation of the Chengjiang biota and details of the decay process. This study indicates that Chengjiang fossils were preserved through two taphonomic pathways that may have captured tissues of distinct compositions, and this finding should provide a foundation for the interpretation of Chengjiang fossils. Many Chengjiang fossils are preserved by pyrite (later pseudomorphed by iron oxides); the clay-rich host sediment was deficient in organic carbon but replete in available Fe, and this composition ensured that a decaying carcass acted as a local substrate for Fe- and S-reducing bacteria. Pyrite morphology probably reflects contrasts in the decay rate, and hence the H 2 S production rate, of different tissues in a carcass. Reactive, rapidly decaying tissues would have quickly supplied H 2 S, producing many pyrite nuclei, resulting in framboidal habits. More recalcitrant tissues would have produced H 2 S more slowly, so that crystal growth operated on fewer nuclei, resulting in larger euhedral pyrite crystals. Reflective films, especially common on Chengjiang arthropods, represent the remains of degraded carbon.
Transactions of The Royal Society of Edinburgh-earth Sciences | 1988
Kevin T. Pickering; Michael G. Bassett; David J. Siveter
The available data from Newfoundland, the British Isles and Scandinavia suggest that by late Ordovician–early Silurian times the ocean separating Laurentia from Eastern Avalonia and Baltica had partly closed with the consumption of intervening oceanic crust. Marine seaways, however, persisted until the middle or late Silurian. Phases of crustal transtension and transpression, predominantly under a major sinistral shear couple, occurred throughout the Silurian and early Devonian until the remnant Iapetus Ocean was completely destroyed. The most appropriate Recent plate tectonic models for Silurian sedimentation between Eastern Avalonia and Laurentia are probably the deep-marine foreland basins between Timor and the northern Australian margin, or between Taiwan and mainland China.
Nature | 2007
Xi-guang Zhang; David J. Siveter; Dieter Waloszek; Andreas Maas
Crown-group crustaceans (Eucrustacea) are common in the fossil record of the past 500 million years back to the early Ordovician period, and very rare representatives are also known from the late Middle and Late Cambrian periods. Finds in Lower Cambrian rocks of the Phosphatocopina, the fossil sister group to eucrustaceans, imply that members of the eucrustacean stem lineage co-occurred, but it remained unclear whether crown-group members were also present at that time. ‘Orsten’-type fossils are typically tiny embryos and cuticle-bearing animals, of which the cuticle is phosphatized and the material is three-dimensional and complete with soft parts. Such fossils are found predominantly in the Cambrian and Ordovician and provide detailed morphological and phylogenetic information on the early evolution of metazoans. Here we report an Orsten-type Konservat-Lagerstätte from the Lower Cambrian of China that contains at least three new arthropod species, of which we describe the most abundant form on the basis of exceptionally well preserved material of several growth stages. The limb morphology and other details of this new species are markedly similar to those of living cephalocarids, branchiopods and copepods and it is assigned to the Eucrustacea, thus representing the first undoubted crown-group crustacean from the early Cambrian. Its stratigraphical position provides substantial support to the proposition that the main cladogenic event that gave rise to the Arthropoda was before the Cambrian. Small leaf-shaped structures on the outer limb base of the new species provide evidence on the long-debated issue of the origin of epipodites: they occur in a set of three, derive from setae and are a ground-pattern feature of Eucrustacea.
Transactions of The Royal Society of Edinburgh-earth Sciences | 1984
Gordon B. Curry; B. J. Bluck; C. J. Burton; J. K. Ingham; David J. Siveter; Alwyn Williams
I. ABSTRACT: Research interest in the Highland Border Complex has been pursued sporadically during the past 150 years. The results and conclusions have emphasised the problems of dealing with a lithologically disparate association which crops out in isolated, fault-bounded slivers along the line of the Highland Boundary fault. For much of the present century, the debate has centred on whether the rocks of the complex have affinities with the Dalradian Supergroup to the N, or are a discrete group. Recent fossil discoveries in a wide variety of Highland Border rocks have confirmed that many are of Ordovician age, and hence cannot have been involved in at least the early Grampian deformational events (now accurately dated as pre-Ordovician) which affect the Dalradian Supergroup. Such palaeontological discoveries form the basis for a viable biostratigraphical synthesis. On a regional scale, it is apparent that the geological history of the Highland Border rocks must be viewed in the context of plate boundary tectonism along the entire northwestern margin of Iapetus during Palaeozoic times.II. ABSTRACT: Silicified articulate brachiopods from the Lower Ordovician (Arenig) Dounans Limestone are extremely rare but the stratigraphically diagnostic genera Archaeorthis Schuchert and Cooper, and Orthidium Hall and Clarke, have been identified. In addition, three specimens with characteristic syntrophiid morphology have been recovered. Inarticulate brachiopods are known from Stonehaven and Bofrishlie Burn near Aberfoyle, and have also been previously recorded from Arran.III. ABSTRACT: Micropalaeontological investigation of the Highland Border Complex has produced a range of microfossils including chitinozoans, coleolids, calcispheres and other more enigmatic objects. The stratigraphical ranges of the species lie almost entirely within the Ordovician and reveal a scatter of ages for different lithologies from the Arenig through to the Caradoc or Ashgill, with a pronounced erosional break between the Llandeilo and the Caradoc.IV. ABSTRACT: A Lower Ordovician (Arenig Series) silicified ostracode fauna from the Highland Border Dounans Limestone at Lime Craig Quarry, Aberfoyle, Central Scotland, represents the earliest record of this group of Crustacea from the British part of the early Palaeozoic ‘North American’ plate.V. ABSTRACT: Palaeontological age determinations for a variety of Highland Border rocks are presented. The data are based on the results of recent prospecting which has demonstrated that macro- and microfossils are present in a much greater range of Highland Border lithologies than previously realised. Data from other studies are also incorporated, as are modern taxonomie re-assessments of older palaeontological discoveries, in a comprehensive survey of Highland Border biostratigraphy. These accumulated data demonstrate that all fossiliferous Highland Border rocks so far discovered are of Ordovician age, with the exception of the Lower Cambrian Leny Limestone.VI. ABSTRACT: The Highland Border Complex consists of at least four rock assemblages: a serpentinite and possibly other ophiolitic rocks of Early or pre-Arenig age; a sequence of limestones and conglomerates of Early Arenig age; a succession of dark shales, cherts, quartz wackes, basic lavas and associated volcanogenic sediments of Llanvirn and ? earlier age; and an assemblage of limestones, breccias, conglomerates and arenites with subordinate shales of Caradoc or Ashgill age. At least three assemblages are divided by unconformities and in theirmost general aspect have similarities with coeval rocks in western Ireland.The Highland Border Complex probably formed N of the Midland Valley arc massif in a marginal sea comparable with the Sunda shelf adjacent to Sumatra–Java. Strike-slip and thrust emplacement of the whole Complex in at least four episodes followed the probable generation of all or part of its rocks by pull-apart mechanisms.
Scopus | 2007
David J. Siveter; Derek J. Siveter; Mark D. Sutton; Derek E. G. Briggs
An exceptionally preserved new ostracod crustacean from the Silurian of Herefordshire, England, preserves eggs and possible juveniles within its carapace, providing an unequivocal and unique view of parental brood care in the invertebrate fossil record. The female fossil is assigned to a new family and superfamily of myodocopids based on its soft-part anatomy. It demonstrates a remarkably conserved egg-brooding reproductive strategy within these ostracods over 425 Myr. The soft-tissue anatomy urges extreme caution in classifying ‘straight-hinged’ Palaeozoic ostracods based on the carapace alone and fundamentally questions the nature of the shell-based Palaeozoic ostracod record.
Archive | 2003
Hou Xianguang; Richard J. Aldridge; Jan Bergstrm; David J. Siveter; Derek J. Siveter; Feng Xiang-hong
The Cambrian fossils of Chengjiang, China , The Cambrian fossils of Chengjiang, China , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی
Proceedings of the Royal Society of London B: Biological Sciences | 2002
Hou Xianguang; Richard J. Aldridge; David J. Siveter; Derek J. Siveter; Feng Xiang-hong
We report the discovery of a new agnathan specimen from the Lower Cambrian Chengjiang Lagerstätte of China and thereby provide new evidence on the myomeres (V–shaped), the branchial apparatus (gill filaments and arches), the dorsal fin and the gonads (24–26) of the earliest vertebrates. The new specimen and the co–occurring Myllokunmingia fengjiaoa and Haikouichthys ercaicunensis represent a single species, which is a primitive member of the crown group craniates (vertebrates) and post–dates the origin of the myxinoids (hagfish). The origin of the vertebrate clade is at least as old as Early Cambrian.
Journal of Micropalaeontology | 1991
David J. Siveter; Jean Vannier; Douglas Palmer
Analysis of all relevant palaeontological and global geological data strongly supports the notion that representatives of Silurian myodocope ostracods had pelagic lifestyles and habitats and that they may well be, within the Ostracoda, pioneer colonisers of such environments. Morphological evidence (from fossil and Recent myodocopes) combined with facies distributional and concomitant faunal evidence (from the Silurian of, for example, Britain, France, Czechoslovakia, Sardinia, Australia and China) endorses the idea that myodocope ostracods may have undergone a benthic to pelagic ecological shift during mid Silurian times. Lower Silurian myodocopes lived, with benthic associates, on well oxygenated shelves. Upper Silurian ostracods lived, typically with low diversity, largely pelagic faunas in outer shelf topographic lows or off-shelf basin slopes, and are characteristically associated with deposits which are in part suggestive of lowered oxygen levels or even anoxic conditions. A pre-adaptation for swimming may have allowed Silurian myodocopes to respond to environmental forcing (negative oxygen levels; positive trophic and nutrient incentives; rises in sea levels) by migrating, through time, up the water column.
Proceedings of the Royal Society of London B: Biological Sciences | 2002
Mark D. Sutton; Derek E. G. Briggs; David J. Siveter; Derek J. Siveter; Patrick J. Orr
The small, non–biomineralized, three–dimensionally preserved arthropod Offacolus kingi Orr et al. from the Wenlock Series (Silurian) of Herefordshire, England, is re–evaluated, and the new family Offacolidae erected. This new study is based on specimens which have been serially ground, reconstructed by computer and rendered in the round as coloured models. Offacolus possesses a prosomal appendage array similar to that of Limulus, but also bears robust and setose exopods on appendages II–V which are unlike those found in any other arthropods. Opisthosomal appendages are similar in number and morphology to the book–gills of Limulus. Cladistic analysis places Offacolus basally within the Chelicerata, as a sister taxon to the eurypterids and extant chelicerates, but more derived than the Devonian Weinbergina.
Nature | 2004
Derek J. Siveter; Mark D. Sutton; Derek E. G. Briggs; David J. Siveter
Pycnogonids (sea spiders) are marine arthropods numbering some 1,160 extant species. They are globally distributed in depths of up to 6,000 metres, and locally abundant; however, their typically delicate form and non-biomineralized cuticle has resulted in an extremely sparse fossil record that is not accepted universally. There are two opposing views of their phylogenetic position: either within Chelicerata as sister group to the euchelicerates, or as a sister taxon to all other euarthropods. The Silurian Herefordshire Konservat-Lagerstätte in England (∼ 425 million years (Myr) bp) yields exceptionally preserved three-dimensional fossils that provide unrivalled insights into the palaeobiology of a variety of invertebrates. The fossils are preserved as calcitic void in-fills in carbonate concretions within a volcaniclastic horizon, and are reconstructed digitally. Here we describe a new pycnogonid from this deposit, which is the oldest adult sea spider by ∼35 Myr and the most completely known fossil species. The large chelate first appendage is consistent with a chelicerate affinity for the pycnogonids. Cladistic analyses place the new species near the base of the pycnogonid crown group, implying that the latter had arisen by the Silurian period.