Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Waxman is active.

Publication


Featured researches published by David J. Waxman.


Proceedings of the National Academy of Sciences of the United States of America | 2001

An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids

Wen Xie; Anna Radominska-Pandya; Yanhong Shi; Cynthia M. Simon; Michael C. Nelson; Erwin S. Ong; David J. Waxman; Ronald M. Evans

Hepatic hydroxylation is an essential step in the metabolism and excretion of bile acids and is necessary to avoid pathologic conditions such as cholestasis and liver damage. In this report, we demonstrate that the human xenobiotic receptor SXR (steroid and xenobiotic receptor) and its rodent homolog PXR (pregnane X receptor) serve as functional bile acid receptors in both cultured cells and animals. In particular, the secondary bile acid derivative lithocholic acid (LCA) is highly hepatotoxic and, as we show here, a metabolic substrate for CYP3A hydroxylation. By using combinations of knockout and transgenic animals, we show that activation of SXR/PXR is necessary and sufficient to both induce CYP3A enzymes and confer resistance to toxicity by LCA, as well as other xenotoxicants such as tribromoethanol and zoxazolamine. Therefore, we establish SXR and PXR as bile acid receptors and a role for the xenobiotic response in the detoxification of bile acids.


Molecular Pharmacology | 2009

Sex Differences in the Expression of Hepatic Drug Metabolizing Enzymes

David J. Waxman; Minita G. Holloway

Sex differences in pharmacokinetics and pharmacodynamics characterize many drugs and contribute to individual differences in drug efficacy and toxicity. Sex-based differences in drug metabolism are the primary cause of sex-dependent pharmacokinetics and reflect underlying sex differences in the expression of hepatic enzymes active in the metabolism of drugs, steroids, fatty acids and environmental chemicals, including cytochromes P450 (P450s), sulfotransferases, glutathione transferases, and UDP-glucuronosyltransferases. Studies in the rat and mouse liver models have identified more than 1000 genes whose expression is sex-dependent; together, these genes impart substantial sexual dimorphism to liver metabolic function and pathophysiology. Sex differences in drug metabolism and pharmacokinetics also occur in humans and are due in part to the female-predominant expression of CYP3A4, the most important P450 catalyst of drug metabolism in human liver. The sexually dimorphic expression of P450s and other liver-expressed genes is regulated by the temporal pattern of plasma growth hormone (GH) release by the pituitary gland, which shows significant sex differences. These differences are most pronounced in rats and mice, where plasma GH profiles are highly pulsatile (intermittent) in male animals versus more frequent (nearly continuous) in female animals. This review discusses key features of the cell signaling and molecular regulatory mechanisms by which these sex-dependent plasma GH patterns impart sex specificity to the liver. Moreover, the essential role proposed for the GH-activated transcription factor signal transducer and activator of transcription (STAT) 5b, and for hepatic nuclear factor (HNF) 4α, as mediators of the sex-dependent effects of GH on the liver, is evaluated. Together, these studies of the cellular, molecular, and gene regulatory mechanisms that underlie sex-based differences in liver gene expression have provided novel insights into the physiological regulation of both xenobiotic and endobiotic metabolism.


Archives of Biochemistry and Biophysics | 1988

Human liver microsomal steroid metabolism: Identification of the major microsomal steroid hormone 6β-hydroxylase cytochrome P-450 enzyme

David J. Waxman; Cynthia Attisano; F. Peter Guengerich; David P. Lapenson

Cytochrome P-450-dependent steroid hormone metabolism was studied in isolated human liver microsomal fractions. 6 beta hydroxylation was shown to be the major route of NADPH-dependent oxidative metabolism (greater than or equal to 75% of total hydroxylated metabolites) with each of three steroid substrates, testosterone, androstenedione, and progesterone. With testosterone, 2 beta and 15 beta hydroxylation also occurred, proceeding at approximately 10% and 3-4% the rate of microsomal 6 beta hydroxylation, respectively, in each of the liver samples examined. Rates for the three steroid 6 beta-hydroxylase activities were highly correlated with each other (r = 0.95-0.97 for 25 individual microsomal preparations), suggesting that a single human liver P-450 enzyme is the principal microsomal 6 beta-hydroxylase catalyst with all three steroid substrates. Steroid 6 beta-hydroxylase rates correlated well with the specific content of human P-450NF (r = 0.69-0.83) and with its associated nifedipine oxidase activity (r = 0.80), but not with the rates for debrisoquine 4-hydroxylase, phenacetin O-deethylase, or S-mephenytoin 4-hydroxylase activities or the specific contents of their respective associated P-450 forms in these same liver microsomes (r less than 0.2). These correlative observations were supported by the selective inhibition of human liver microsomal 6 beta hydroxylation by antibody raised to either human P-450NF or a rat homolog, P-450 PB-2a. Anti-P-450NF also inhibited human microsomal testosterone 2 beta and 15 beta hydroxylation in parallel to the 6 beta-hydroxylation reaction. This antibody also inhibited rat P-450 2a-dependent steroid hormone 6 beta hydroxylation in uninduced adult male rat liver microsomes but not the steroid 2 alpha, 16 alpha, or 7 alpha hydroxylation reactions catalyzed by other rat P-450 forms. Finally, steroid 6 beta hydroxylation catalyzed by either human or rat liver microsomes was selectively inhibited by NADPH-dependent complexation of the macrolide antibiotic triacetyloleandomycin, a reaction that is characteristic of members of the P-450NF gene subfamily (P-450 IIIA subfamily). These observations establish that P-450NF or a closely related enzyme is the major catalyst of steroid hormone 6 beta hydroxylation in human liver microsomes, and furthermore suggest that steroid 6 beta hydroxylation may provide a useful, noninvasive monitor for the monooxygenase activity of this hepatic P-450 form.


Endocrine Reviews | 2011

Child Health, Developmental Plasticity, and Epigenetic Programming

Zeev Hochberg; Robert Feil; Miguel Constancia; Mario F. Fraga; Claudine Junien; Jean-Claude Carel; P. Boileau; Y. Le Bouc; C.L. Deal; K. Lillycrop; R. Scharfmann; A. Sheppard; Michael K. Skinner; M. Szyf; R.A. Waterland; David J. Waxman; E. Whitelaw; K. Ong; Kerstin Albertsson-Wikland

Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs.


Journal of Biological Chemistry | 1999

SOCS/CIS Protein Inhibition of Growth Hormone-stimulated STAT5 Signaling by Multiple Mechanisms

Prabha A. Ram; David J. Waxman

The inhibition of growth hormone (GH) signaling by five members of the GH-inducible suppressor of cytokine signaling (SOCS/CIS) family was investigated in transfected COS cells. Complete inhibition of GH activation of the signal transducer STAT5b and STAT5b-dependent transcriptional activity was observed upon expression of SOCS-1 or SOCS-3, while partial inhibition (CIS, SOCS-2) or no inhibition (SOCS-6) was seen with other SOCS/CIS family members. SOCS-1, SOCS-2, SOCS-3, and CIS each strongly inhibited the GH receptor (GHR)-dependent tyrosine phosphorylation of JAK2 seen at low levels of transfected JAK2; however, only SOCS-1 strongly inhibited the GHR-independent tyrosine phosphorylation of JAK2 seen at higher JAK2 levels. To probe for interactions with GHR, in vitrobinding assays were carried out using glutathioneS-transferase-GHR fusion proteins containing variable lengths of GHRs COOH-terminal cytoplasmic domain. CIS and SOCS-2 bound to fusions containing as few as 80 COOH-terminal GHR residues, provided the fusion protein was tyrosine-phosphorylated. By contrast, SOCS-3 binding required tyrosine-phosphorylated GHR membrane-proximal sequences, SOCS-1 binding was tyrosine phosphorylation-independent, and SOCS-6 did not bind the GHR fusion proteins at all. Mutation of GHRs membrane-proximal tyrosine residues 333 and 338 to phenylalanine suppressed the inhibition by SOCS-3, but not by CIS, of GH signaling to STAT5b. SOCS/CIS proteins can thus inhibit GH signaling to STAT5b by three distinct mechanisms, distinguished by their molecular targets within the GHR-JAK2 signaling complex, as exemplified by SOCS-1 (direct JAK2 kinase inhibition), SOCS-3 (inhibition of JAK2 signaling via membrane-proximal GHR tyrosines 333 and 338), and CIS and SOCS-2 (inhibition via membrane-distal tyrosine(s)).


Archives of Biochemistry and Biophysics | 1991

Steroid hormone hydroxylase specificities of eleven cDNA-expressed human cytochrome P450s

David J. Waxman; David P. Lapenson; Toshifumi Aoyama; Harry V. Gelboin; Frank J. Gonzalez; Ken Korzekwa

Steroid hydroxylation specificities were determined for 11 forms of human cytochrome P450, representing four gene families and eight subfamilies, that were synthesized in human hepatoma Hep G2 cells by means of cDNA-directed expression using vaccinia virus. Microsomes isolated from the P450-expressing Hep G2 cells were isolated and then assayed for their regioselectivity of hydroxylation toward testosterone, androstenedione, and progesterone. Four of the eleven P450s exhibited high steroid hydroxylase activity (150-900 pmol hydroxysteroid/min/mg Hep G2 microsomal protein), one was moderately active (30-50 pmol/min/mg) and six were inactive. In contrast, 10 of the P450s effectively catalyzed O-deethylation of 7-ethoxycoumarin, a model drug substrate, while only one (P450 2A6) catalyzed significant coumarin 7-hydroxylation. Human P450 4B1, which is expressed in lung but not liver, catalyzed the 6 beta-hydroxylation of all three steroids at similar rates and with only minor formation of other hydroxylated products. Three members of human P450 family 3A, which are expressed in liver and other tissues, also catalyzed steroid 6 beta-hydroxylation as their major activity but, additionally, formed several minor products that include 2 beta-hydroxy and 15 beta-hydroxy derivatives in the case of testosterone. These patterns are similar to those exhibited by rat family 3A P450s. Although several rodent P450s belonging to subfamilies 2A, 2B, 2C, 2D are active steroid hydroxylases, four of five human P450s belonging to these subfamilies exhibited very low activity or were inactive, as were the human 1A and 2E P450s examined in the present study. These studies demonstrate that individual human cytochrome P450 enzymes can hydroxylate endogenous steroid hormones with a high degree of stereospecificity and regioselectivity, and that some, but not all of the human cytochromes exhibit metabolite profiles similar to their rodent counterparts.


Molecular Cancer Therapeutics | 2008

Combination of antiangiogenesis with chemotherapy for more effective cancer treatment

David J. Waxman

Angiogenesis is a hallmark of tumor development and metastasis and is now a validated target for cancer treatment. However, the survival benefits of antiangiogenic drugs have thus far been rather modest, stimulating interest in developing more effective ways to combine antiangiogenic drugs with established chemotherapies. This review discusses recent progress and emerging challenges in this field; interactions between antiangiogenic drugs and conventional chemotherapeutic agents are examined, and strategies for the optimization of combination therapies are discussed. Antiangiogenic drugs such as the anti-vascular endothelial growth factor antibody bevacizumab can induce a functional normalization of the tumor vasculature that is transient and can potentiate the activity of coadministered chemoradiotherapies. However, chronic angiogenesis inhibition typically reduces tumor uptake of coadministered chemotherapeutics, indicating a need to explore new approaches, including intermittent treatment schedules and provascular strategies to increase chemotherapeutic drug exposure. In cases where antiangiogenesis-induced tumor cell starvation augments the intrinsic cytotoxic effects of a conventional chemotherapeutic drug, combination therapy may increase antitumor activity despite a decrease in cytotoxic drug exposure. As new angiogenesis inhibitors enter the clinic, reliable surrogate markers are needed to monitor the progress of antiangiogenic therapies and to identify responsive patients. New targets for antiangiogenesis continue to be discovered, increasing the opportunities to interdict tumor angiogenesis and circumvent resistance mechanisms that may emerge with chronic use of these drugs. [Mol Cancer Ther 2008;07(12):3670–84]


Archives of Biochemistry and Biophysics | 1995

Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes.

Arleen B. Rifkind; Charis Lee; Thomas K.H. Chang; David J. Waxman

The membrane-bound endogenous fatty acid arachidonic acid can be released from membranes by phospholipases and then metabolized to biologically active compounds by cyclooxygenases, lipoxygenases, and cytochrome P450 (CYP) enzymes. In the liver the CYP pathway is the most significant. Liver CYP arachidonate products include epoxyeicosatrienoic acids (EETs) and monohydroxylated products (HETEs). We examined metabolism of [1-14C]arachidonic acid by a panel of 10 human CYP enzymes expressed in HepG2 cells. In the absence of expressed CYP enzymes, control HepG2 cell microsomes generated only small amounts of omega- and omega--1-OH arachidonic acid (ratio 2:1). Microsomes from HepG2 cells expressing CYP2C8, 2C9, 1A2, and 2E1 were 7-21 times more active than microsomes from the HepG2 controls. CYP2C8, 2C9, and 1A2 principally generated epoxygenase products; 36 to 48% were in the form of EET-diols, reflecting host HepG2 microsomal epoxide hydrolase activity. CYP2C8 and 2C9 formed more 14,15- and 11,12-EET than did CYP1A2, while CYP1A2 formed more 8,9-EET. CYP2C9 also generated a peak with the retention time of 12-HETE. CYP2E1 generated omega--1-OH arachidonic acid and, to a lesser extent, omega-OH arachidonic acid (ratio 2:1). A small amount of epoxygenase activity was also detected for CYP2B6; its overall activity, however, was only about twice control levels. Activities of CYP2A6, 3A3, 3A4, and 3A5 were low and limited to the omega-/omega--1-OH arachidonic acid peak; CYP2D6 was inactive. Microsomes prepared from three individual human livers varied threefold in total arachidonic acid metabolism. For all three livers omega-OH arachidonic acid was the major product (up to 74% of total metabolites). Epoxygenase products constituted 14 to 28% of the total products; 60 to 83% of those were EET-diols, indicating that the human liver microsomes have substantial EET-epoxide hydrolase activity. 11,12-EET was the major EET for two livers and 14,15-EET for the third. The CYP2C inhibitor sulfaphenazole depressed human liver microsomal epoxygenase activity by 50% at 50 microM, while alpha-naphthoflavone inhibited arachidonic acid epoxygenase activity by 27% at 2 microM and by 32% at 10 microM. Collectively, these findings suggest that human liver microsomal arachidonic acid metabolism is catalyzed principally by CYP2C enzymes. CYP1A2, CYP2E1, and possibly CYP2B6 are likely to play more minor roles, though their contribution may be enhanced by exposure to inducers of those enzymes. CYP2A6, CYP2D6, and CYP3A enzymes are unlikely to make any significant contribution.(ABSTRACT TRUNCATED AT 400 WORDS)


Journal of Biological Chemistry | 1996

GROWTH HORMONE ACTIVATION OF STAT 1, STAT 3, AND STAT 5 IN RAT LIVER : DIFFERENTIAL KINETICS OF HORMONE DESENSITIZATION AND GROWTH HORMONE STIMULATION OF BOTH TYROSINE PHOSPHORYLATION AND SERINE/THREONINE PHOSPHORYLATION

Prabha A. Ram; Soo-Hee Park; Hee K. Choi; David J. Waxman

Intermittent plasma growth hormone (GH) pulses, which occur in male but not female rats, activate liver Stat 5 by a mechanism that involves tyrosine phosphorylation and nuclear translocation of this latent cytoplasmic transcription factor (Waxman, D. J., Ram, P. A., Park, S. H., and Choi, H. K.(1995) J. Biol. Chem. 270, 13262-13270). We demonstrate that physiological levels of GH can also activate Stat 1 and Stat 3 in liver tissue, but with a dependence on the dose of GH and its temporal plasma profile that is distinct from Stat 5 and with a striking desensitization following a single hormone pulse that is not observed with liver Stat 5. GH activation of the two groups of Stats leads to their selective binding to DNA response elements upstream of the c-fos gene (c-sis-inducible enhancer element; Stat 1 and Stat 3 binding) and the β-casein gene (mammary gland factor element; liver Stat 5 binding). In addition to tyrosine phosphorylation, GH is shown to stimulate phosphorylation of these Stats on serine or threonine in a manner that either enhances (Stat 1 and Stat 3) or substantially alters (liver Stat 5) the binding of each Stat to its cognate DNA response element. These findings establish the occurrence of multiple, Stat-dependent GH signaling pathways in liver cells that can target distinct genes and thereby contribute to the diverse effects that GH and its sexually dimorphic plasma profile have on liver gene expression.


Journal of Biological Chemistry | 1997

Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase.

Prabha A. Ram; David J. Waxman

Growth hormone (GH) rapidly stimulates tyrosine phosphorylation followed by serine/threonine phosphorylation of multiple cytoplasmic STAT transcription factors, including one, STAT5b, that is uniquely responsive to the temporal pattern of plasma GH stimulation in rat liver and is proposed to play a central role in the activation of male-expressed liver genes by GH pulses in vivo (Waxman, D. J., Ram, P. A., Park, S. H., and Choi, H. K. (1995) J. Biol. Chem. 270, 13262–13270). We now show that JAK2, the GH receptor-associated tyrosine kinase, is present both in the cytosol and in the nucleus in cultured liver cells and in rat liver in vivo and that GH-activated STAT3 but not STAT5b becomes associated with nuclear JAK2. GH is also shown to activate by 3–4-fold SHP-1, a phosphotyrosine phosphatase that contains twosrc homology 2 (SH2) domains. GH also induces nuclear translocation and binding of SHP-1 to tyrosine-phosphorylated STAT5b, suggesting that this GH-activated phosphatase may play a role in dephosphorylation leading to deactivation of nuclear STAT5b following the termination of a plasma GH pulse in male rat liver in vivo. No such association of SHP-1 with GH-activated STAT3 was detected, a finding that could help explain the marked desensitization of STAT3, but not STAT5b, to subsequent GH pulses following an initial GH activation event.

Collaboration


Dive into the David J. Waxman's collaboration.

Top Co-Authors

Avatar

Thomas K. H. Chang

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank J. Gonzalez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charles L. Crespi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge