Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Wing is active.

Publication


Featured researches published by David J. Wing.


7th AIAA ATIO Conf, 2nd CEIAT Int'l Conf on Innov and Integr in Aero Sciences,17th LTA Systems Tech Conf; followed by 2nd TEOS Forum | 2007

Safety Performance of Airborne Separation: Preliminary Baseline Testing

Maria C. Consiglio; Sherwood T. Hoadley; David J. Wing; Brian T. Baxley

The Safety Performance of Airborne Separation (SPAS) study is a suite of Monte Carlo simulation experiments designed to analyze and quantify safety behavior of airborne separation. This paper presents results of preliminary baseline testing. The preliminary baseline scenario is designed to be very challenging, consisting of randomized routes in generic high-density airspace in which all aircraft are constrained to the same flight level. Sustained traffic density is varied from approximately 3 to 15 aircraft per 10,000 square miles, approximating up to about 5 times today’s traffic density in a typical sector. Research at high traffic densities and at multiple flight levels are planned within the next two years. Basic safety metrics for aircraft separation are collected and analyzed. During the progression of experiments, various errors, uncertainties, delays, and other variables potentially impacting system safety will be incrementally introduced to analyze the effect on safety of the individual factors as well as their interaction and collective effect. In this paper we report the results of the first experiment that addresses the preliminary baseline condition tested over a range of traffic densities. Early results at five times the typical traffic density in today’s NAS indicate that, under the assumptions of this study, airborne separation can be safely performed. In addition, we report on initial observations from an exploration of four additional factors tested at a single traffic density: broadcast surveillance signal interference, extent of intent sharing, pilot delay, and wind prediction error.


12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference | 2012

Traffic Aware Strategic Aircrew Requests (TASAR)

Mark G. Ballin; David J. Wing

Under Instrument Flight Rules, pilots are not permitted to make changes to their approved trajectory without first receiving permission from Air Traffic Control (ATC). Referred to as “user requests,” trajectory change requests from aircrews are often denied or deferred by controllers because they have awareness of traffic and airspace constraints not currently available to flight crews. With the introduction of Automatic Dependent Surveillance–Broadcast (ADS-B) and other information services, a rich traffic, weather, and airspace information environment is becoming available on the flight deck. Automation developed by NASA uses this information to aid flight crews in the identification and formulation of optimal conflict-free trajectory requests. The concept of Traffic Aware Strategic Aircrew Requests (TASAR) combines ADS-B and airborne automation to enable user-optimal in-flight trajectory replanning and to increase the likelihood of ATC approval for the resulting trajectory change request. TASAR may improve flight efficiency or other user-desired attributes of the flight while not impacting and potentially benefiting the air traffic controller. This paper describes the TASAR concept of operations, its enabling automation technology which is currently under development, and NASA’s plans for concept assessment and maturation.


10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference | 2010

Comparison of Ground-Based and Airborne Function Allocation Concepts for NextGen Using Human-In-The-Loop Simulations

David J. Wing; Thomas Prevot; Jennifer L. Murdoch; Christopher D. Cabrall; Jeffrey Homola; Lynne Martin; Joey Mercer; Sherwood T. Hoadley; Sara R. Wilson; Clay E. Hubbs; James P. Chamberlain; Ryan C. Chartrand; Maria C. Consiglio; Michael T. Palmer

Investigation of function allocation for the Next Generation Air Transportation System is being conducted by the National Aeronautics and Space Administration (NASA). To provide insight on comparability of different function allocations for separation assurance, two human-in-the-loop simulation experiments were conducted on homogeneous airborne and ground-based approaches to four-dimensional trajectory-based operations, one referred to as ground-based automated separation assurance (groundbased) and the other as airborne trajectory management with self-separation (airborne). In the coordinated simulations at NASA s Ames and Langley Research Centers, controllers for the ground-based concept at Ames and pilots for the airborne concept at Langley managed the same traffic scenarios using the two different concepts. The common scenarios represented a significant increase in airspace demand over current operations. Using common independent variables, the simulations varied traffic density, scheduling constraints, and the timing of trajectory change events. Common metrics were collected to enable a comparison of relevant results. Where comparisons were possible, no substantial differences in performance or operator acceptability were observed. Mean schedule conformance and flight path deviation were considered adequate for both approaches. Conflict detection warning times and resolution times were mostly adequate, but certain conflict situations were detected too late to be resolved in a timely manner. This led to some situations in which safety was compromised and/or workload was rated as being unacceptable in both experiments. Operators acknowledged these issues in their responses and ratings but gave generally positive assessments of the respective concept and operations they experienced. Future studies will evaluate technical improvements and procedural enhancements to achieve the required level of safety and acceptability and will investigate the integration of airborne and ground-based capabilities within the same airspace to leverage the benefits of each concept.


AIAA's Aircraft Technology, Integration, and Operations (ATIO) 2002 Technical Forum | 2002

NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

Mark G. Ballin; Jacco M. Hoekstra; David J. Wing; Gary W. Lohr

Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.


8th AIAA Aviation Technology, Integration, and OperationsAmerican Institute of Aeronautics and Astronautics | 2008

Impact of Pilot Delay and Non-Responsiveness on the Safety Performance of Airborne Separation

Maria C. Consiglio; Sherwood T. Hoadley; David J. Wing; Brian T. Baxley; Bonnie Danette Allen

Assessing the safety effects of prediction errors and uncertainty on automation supported functions in the Next Generation Air Transportation System concept of operations is of foremost importance, particularly safety critical functions such as separation that involve human decision-making. Both ground-based and airborne, the automation of separation functions must be designed to account for, and mitigate the impact of, information uncertainty and varying human response. This paper describes an experiment that addresses the potential impact of operator delay when interacting with separation support systems. In this study, we evaluated an airborne separation capability operated by a simulated pilot. The experimental runs are part of the Safety Performance of Airborne Separation (SPAS) experiment suite that examines the safety implications of prediction errors and system uncertainties on airborne separation assistance systems. Pilot actions required by the airborne separation automation to resolve traffic conflicts were delayed within a wide range, varying from five to 240 seconds while a percentage of randomly selected pilots were programmed to completely miss the conflict alerts and therefore take no action. Results indicate that the strategic Airborne Separation Assistance System (ASAS) functions exercised in the experiment can sustain pilot response delays of up to 90 seconds and more, depending on the traffic density. However, when pilots or operators fail to respond to conflict alerts the safety effects are substantial, particularly at higher traffic densities


ieee/aiaa digital avionics systems conference | 2007

Distributed traffic complexity management by preserving trajectory flexibility

Husni Idris; Robert A. Vivona; Jose-Luis Garcia-Chico; David J. Wing

In order to handle the expected increase in air traffic volume, the next generation air transportation system is moving towards a distributed control architecture, in which ground based service providers such as controllers and traffic managers and air-based users such as pilots share responsibility for aircraft trajectory generation and management. This paper presents preliminary research investigating a distributed trajectory oriented approach to manage traffic complexity, based on preserving trajectory flexibility. The underlying hypotheses are that preserving trajectory flexibility autonomously by aircraft naturally achieves the aggregate objective of avoiding excessive traffic complexity, and that trajectory flexibility is increased by collaboratively minimizing trajectory constraints without jeopardizing the intended air traffic management objectives. This paper presents an analytical framework in which flexibility is defined in terms of robustness and adaptability to disturbances and preliminary metrics are proposed that can be used to preserve trajectory flexibility. The hypothesized impacts are illustrated through analyzing a trajectory solution space in a simple scenario with only speed as a degree of freedom, and in constraint situations involving meeting multiple times of arrival and resolving conflicts.


7th AIAA ATIO Conf, 2nd CEIAT Int'l Conf on Innov and Integr in Aero Sciences,17th LTA Systems Tech Conf; followed by 2nd TEOS Forum | 2007

A Distributed Trajectory-Oriented Approach to Managing Traffic Complexity

Husni Idris; David J. Wing; Robert A. Vivona; Jose-Luis Garcia-Chico

In order to handle the expected increase in air traffic volume, the next generation air transportation system is moving towards a distributed control architecture, in which ground-based service providers such as controllers and traffic managers and air-based users such as pilots share responsibility for aircraft trajectory generation and management. While its architecture becomes more distributed, the goal of the Air Traffic Management (ATM) system remains to achieve objectives such as maintaining safety and efficiency. It is, therefore, critical to design appropriate control elements to ensure that aircraft and groundbased actions result in achieving these objectives without unduly restricting user-preferred trajectories. This paper presents a trajectory-oriented approach containing two such elements. One is a trajectory flexibility preservation function, by which aircraft plan their trajectories to preserve flexibility to accommodate unforeseen events. And the other is a trajectory constraint minimization function by which ground-based agents, in collaboration with air-based agents, impose just-enough restrictions on trajectories to achieve ATM objectives, such as separation assurance and flow management. The underlying hypothesis is that preserving trajectory flexibility of each individual aircraft naturally achieves the aggregate objective of avoiding excessive traffic complexity, and that trajectory flexibility is increased by minimizing constraints without jeopardizing the intended ATM objectives. The paper presents conceptually how the two functions operate in a distributed control architecture that includes self separation. The paper illustrates the concept through hypothetical scenarios involving conflict resolution and flow management. It presents a functional analysis of the interaction and information flow between the functions. It also presents an analytical framework for defining metrics and developing methods to preserve trajectory flexibility and minimize its constraints. In this framework flexibility is defined in terms of robustness and adaptability to disturbances and the impact of constraints is illustrated through analysis of a trajectory solution space with limited degrees of freedom and in simple constraint situations involving meeting multiple times of arrival and resolving a conflict.


AIAA Guidance, Navigation, and Control Conference and Exhibit | 2002

USE OF TRAFFIC INTENT INFORMATION BY AUTONOMOUS AIRCRAFT IN CONSTRAINED OPERATIONS

David J. Wing; Bryan E. Barmore; Karthik Krishnamurthy

This paper presents findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision-making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous flight management were compared under conditions of low and high operational complexity (traffic and airspace hazard density). The tactical mode was characterized primarily by the use of traffic state data for conflict detection and resolution and a manual approach to meeting operational constraints. The strategic mode involved the combined use of traffic state and intent information, provided the pilot an additional level of alerting, and allowed an automated approach to meeting operational constraints. Operational constraints applied in the experiment included separation assurance, schedule adherence, airspace hazard avoidance, flight efficiency, and passenger comfort. The strategic operational mode was found to be effective in reducing unnecessary maneuvering in conflict situations where the intruders intended maneuvers would resolve the conflict. Conditions of high operational complexity and vertical maneuvering resulted in increased proliferation of conflicts, but both operational modes exhibited characteristics of stability based on observed conflict proliferation rates of less than 30 percent. Scenario case studies illustrated the need for maneuver flight restrictions to prevent the creation of new conflicts through maneuvering and the need for an improved user interface design that appropriately focuses the pilots attention on conflict prevention information. Pilot real-time assessment of maximum workload indicated minimal sensitivity to operational complexity, providing further evidence that pilot workload is not the limiting factor for feasibility of an en-route distributed traffic management system, even under highly constrained conditions.


12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference | 2012

Autonomous Operations Planner: A Flexible Platform for Research in Flight-Deck Support for Airborne Self-Separation

David A. Karr; Robert A. Vivona; David A. Roscoe; Stephen M. DePascale; David J. Wing

The Autonomous Operations Planner (AOP), developed by NASA, is a flexible and powerful prototype of a flight-deck automation system to support self-separation of aircraft. It incorporates a variety of algorithms to detect and resolve conflicts between the trajectories of its own aircraft and traffic aircraft while meeting route constraints such as required times of arrival and avoiding airspace hazards such as convective weather and restricted airspace. This integrated suite of algorithms provides flight crew support for strategic and tactical conflict resolutions and conflict-free trajectory planning while en route. Versions of AOP have supported an extensive set of experiments covering various conditions and variations on the self-separation concept, yielding insight into the system’s design and resolving various challenges encountered in the exploration of the concept. The design of AOP will enable it to continue to evolve and support experimentation as the self-separation concept is refined.


11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference | 2011

For Spacious Skies: Self-Separation with "Autonomous Flight Rules" in US Domestic Airspace

David J. Wing; William B. Cotton

Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global precision navigation, emerging airborne surveillance, and onboard computing enable traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer flight restrictions than are required when using ground-based separation. The AFR concept proposes a practical means in which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control. The paper discusses the context and motivation for implementing self-separation in US domestic airspace. It presents a historical perspective on separation, the proposed way forward in AFR, the rationale behind mixed operations, and the expected benefits of AFR for the airspace user community.

Collaboration


Dive into the David J. Wing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Husni Idris

Dynamics Research Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey Henderson

Dynamics Research Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge