David Jesse Sanchez
Western University of Health Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David Jesse Sanchez.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Su-Yang Liu; David Jesse Sanchez; Roghiyh Aliyari; Sun Lu; Genhong Cheng
Type I and type II interferons (IFNs) are cytokines that establish the cellular antiviral state through the induction of IFN-stimulated genes (ISGs). We sought to understand the basis of the antiviral activity induced by type I and II IFNs in relation to the functions of their ISGs. Based on gene expression studies, we systematically identified antiviral ISGs by performing blinded, functional screens on 288 type I and type II ISGs. We assessed and validated the antiviral activity of these ISGs against an RNA virus, vesicular stomatitis virus (VSV), and a DNA virus, murine gammaherpes virus (MHV-68). Overall, we identified 34 ISGs that elicited an antiviral effect on the replication of either one or both viruses. Fourteen ISGs have uncharacterized antiviral functions. We further defined ISGs that affect critical life-cycle processes in expression of VSV protein and MHV-68 immediate-early genes. Two previously undescribed antiviral ISGs, TAP1 and BMP2, were further validated. TAP1-deficient fibroblasts were more susceptible to VSV infection but less so to MHV-68 infection. On the other hand, exogenous BMP2 inhibits MHV-68 lytic growth but did not affect VSV growth. These results delineate common and distinct sets of type I and type II IFN-induced genes as well as identify unique ISGs that have either broad or specific antiviral effects on these viruses.
Current Opinion in Immunology | 2011
Su-Yang Liu; David Jesse Sanchez; Genhong Cheng
Type I interferons (IFNs) are cytokines of the innate immune system that induce antiviral protein expression in response to viral infection. Various proteins and pathways have been shown to recognize nucleic acid ligands especially from RNA viruses. Here, we will review recent developments including transcription of DNA virus genomes into RNA ligands, and the recognition of viruses by TLR2 for interferon induction. The induced IFNs activate many interferon stimulated genes (ISGs) that have direct antiviral effects. Recent studies have identified IFITM proteins as the first ISG to inhibit viral entry processes and revealed mechanistic understanding of known antiviral ISGs such as ISG15 and Viperin.
Journal of Immunology | 2006
Claudia N. Renn; David Jesse Sanchez; Maria Teresa Ochoa; Annaliza Legaspi; Chang-Keun Oh; Philip T. Liu; Stephan R. Krutzik; Peter A. Sieling; Genhong Cheng; Robert L. Modlin
Langerhans cells (LC) are a unique subset of dendritic cells (DC), present in the epidermis and serving as the first line of defense against pathogens invading the skin. To investigate the role of human LCs in innate immune responses, we examined TLR expression and function of LC-like DCs derived from CD34+ progenitor cells and compared them to DCs derived from peripheral blood monocytes (monocyte-derived DC; Mo-DC). LC-like DCs and Mo-DCs expressed TLR1–10 mRNAs at comparable levels. Although many of the TLR-induced cytokine patterns were similar between the two cell types, stimulation with the TLR3 agonist poly(I:C) triggered significantly higher amounts of the IFN-inducible chemokines CXCL9 (monokine induced by IFN-γ) and CXCL11 (IFN-γ-inducible T cell α chemoattractant) in LC-like DCs as compared with Mo-DCs. Supernatants from TLR3-activated LC-like DCs reduced intracellular replication of vesicular stomatitis virus in a type I IFN-dependent manner. Finally, CXCL9 colocalized with LCs in skin biopsy specimens from viral infections. Together, our data suggest that LCs exhibit a direct antiviral activity that is dependent on type I IFN as part of the innate immune system.
Cell Host & Microbe | 2009
Seungmin Hwang; Kyeong Seon Kim; Emilio Flaño; Ting-Ting Wu; Leming M. Tong; Ann N. Park; Moon Jung Song; David Jesse Sanchez; Ryan M. O'Connell; Genhong Cheng; Ren Sun
A conserved herpesviral kinase, designated ORF36 in murine gamma-herpesvirus 68 (MHV-68), plays multiple vital roles in the viral life cycle. Here, we show by screening mutant viruses that ORF36 counteracts the antiviral type I interferon (IFN) response. ORF36 specifically binds to the activated form of interferon regulatory factor 3 (IRF-3) in the nucleus, inhibiting IRF-3 interaction with the cotranscriptional activator CBP and thereby suppressing the recruitment of RNA polymerase II to the interferon beta promoter. The anti-IFN function of ORF36 is conserved among herpesvirus subfamilies, although the conserved kinase activity is not absolutely required for this function. MHV-68 lacking ORF36 induces a greater interferon response and is attenuated in vitro and in vivo, where acute viral infection in the lung and latency in the spleen are compromised. Our data suggest that herpesviruses have evolved within their conserved kinase an anti-IFN activity critical for evasion of host immunity and for persistence.
International Journal of Nanomedicine | 2012
Xianting Ding; David Jesse Sanchez; Arash Shahangian; Ibrahim Al-Shyoukh; Genhong Cheng; Chih-Ming Ho
Background Infectious diseases cause many molecular assemblies and pathways within cellular signaling networks to function aberrantly. The most effective way to treat complex, diseased cellular networks is to apply multiple drugs that attack the problem from many fronts. However, determining the optimal combination of several drugs at specific dosages to reach an endpoint objective is a daunting task. Methods In this study, we applied an experimental feedback system control (FSC) method and rapidly identified optimal drug combinations that inhibit herpes simplex virus-1 infection, by only testing less than 0.1% of the total possible drug combinations. Results Using antiviral efficacy as the criterion, FSC quickly identified a highly efficacious drug cocktail. This cocktail contained high dose ribavirin. Ribavirin, while being an effective antiviral drug, often induces toxic side effects that are not desirable in a therapeutic drug combination. To screen for less toxic drug combinations, we applied a second FSC search in cascade and used both high antiviral efficacy and low toxicity as criteria. Surprisingly, the new drug combination eliminated the need for ribavirin, but still blocked viral infection in nearly 100% of cases. Conclusion This cascade search provides a versatile platform for rapid discovery of new drug combinations that satisfy multiple criteria.
Systematic and Applied Microbiology | 2014
David Jesse Sanchez; Magdalena Mulet; Ana C. Rodríguez; Zoyla David; Jorge Lalucat; Elena García-Valdés
Strains VGXO14(T) and Vi1 were isolated from the Atlantic intertidal shore from Galicia, Spain, after the Prestige oil spill. Both strains were Gram-negative rod-shaped bacteria with one polar inserted flagellum, strictly aerobic, and able to grow at 18-37°C, pH 6-10 and 2-10% NaCl. A preliminary analysis of the 16S rRNA and the partial rpoD gene sequences indicated that these strains belonged to the Pseudomonas genus but were distinct from any known Pseudomonas species. A polyphasic taxonomic approach including phylogenetic, chemotaxonomic, phenotypic and genotypic data confirmed that the strains belonged to the Pseudomonas pertucinogena group. In a multilocus sequence analysis, the similarity of VGXO14(T) and Vi1 to the closest type strain of the group, Pseudomonas pachastrellae, was 90.4%, which was lower than the threshold of 97% established to discriminate species in the Pseudomonas genus. The DNA-DNA hybridisation similarity between strains VGXO14(T) and Vi1 was 79.6%, but below 70% with the type strains in the P. pertucinogena group. Therefore, the strains should be classified within the genus Pseudomonas as a novel species, for which the name Pseudomonas aestusnigri is proposed. The type strain is VGXO14(T) (=CCUG 64165(T)=CECT 8317(T)).
Journal of Virology | 2008
David Jesse Sanchez; Daniel Miranda; Vaithilingaraja Arumugaswami; Seungmin Hwang; Adam E. Singer; Ashkon Senaati; Arash Shahangian; Moon Jung Song; Ren Sun; Genhong Cheng
ABSTRACT Innate immune responses against viral infection, especially the induction of type I interferon, are critical for limiting the replication of the virus. Although it has been shown that DNA can induce type I interferon, to date no natural DNA ligand of a virus that induces type I interferon has been described. Here we screened the genome of murine gammaherpesvirus 68 with mutations at various genomic locations to map the region of DNA that induces type I interferon. A repetitive region termed the 100-base-pair repeat region is a ligand that is both necessary and sufficient for the viral genomic DNA to induce type I interferon. A region colinear with this ligand in the genome of Kaposis sarcoma-associated herpesvirus also induces type I interferon. We have thus defined a repetitive region of the genomes of gammaherpesviruses as the first natural DNA virus ligand that induces type I interferon.
Applied and Environmental Microbiology | 2014
David Jesse Sanchez; Sandra Matthijs; Margarita Gomila; Catherine Tricot; Magdalena Mulet; Elena García-Valdés; Jorge Lalucat
ABSTRACT A water sample from a noncontaminated site at the source of the Woluwe River (Belgium) was analyzed by culture-dependent and -independent methods. Pseudomonas isolates were identified by sequencing and analysis of the rpoD gene. Culture-independent methods consisted of cloning and pyrosequencing of a Pseudomonas rpoD amplicon from total DNA extracted from the same sample and amplified with selective rpoD gene primers. Among a total of 14,540 reads, 6,228 corresponded to Pseudomonas rpoD gene sequences by a BLAST analysis in the NCBI database. The selection criteria for the reads were sequences longer than 400 bp, an average Q 40 value greater than 25, and >85% identity with a Pseudomonas species. Of the 6,228 Pseudomonas rpoD sequences, 5,345 sequences met the established criteria for selection. Sequences were clustered by phylogenetic analysis and by use of the QIIME software package. Representative sequences of each cluster were assigned by BLAST analysis to a known Pseudomonas species when the identity with the type strain was greater than or equal to 96%. Twenty-six species distributed among 12 phylogenetic groups or subgroups within the genus were detected by pyrosequencing. Pseudomonas stutzeri, P. moraviensis, and P. simiae were the only cultured species not detected by pyrosequencing. The predominant phylogenetic group within the Pseudomonas genus was the P. fluorescens group, as determined by culture-dependent and -independent analyses. In all analyses, a high number of putative novel phylospecies was found: 10 were identified in the cultured strains and 246 were detected by pyrosequencing, indicating that the diversity of Pseudomonas species has not been fully described.
PLOS ONE | 2015
David Jesse Sanchez; Daniel Miranda; Matthew D. Marsden; Thomas Michael A. Dizon; Johnny Bontemps; Sergio J. Davila; Lara E. Del Mundo; Thai Ha; Ashkon Senaati; Jerome A. Zack; Genhong Cheng
Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-β promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host.
PLOS ONE | 2014
David Jesse Sanchez; Margarita Gomila; Antonio Bennasar; Jorge Lalucat; Elena García-Valdés
The genomes of Pseudomonas aeruginosa isolates of the new sequence type ST-1146, three environmental (P37, P47 and P49) and one clinical (SD9) isolates, with differences in their antibiotic susceptibility profiles have been sequenced and analysed. The genomes were mapped against P. aeruginosa PAO1-UW and UCBPP-PA14. The allelic profiles showed that the highest number of differences were in “Related to phage, transposon or plasmid” and “Secreted factors” categories. The clinical isolate showed a number of exclusive alleles greater than that for the environmental isolates. The phage Pf1 region in isolate SD9 accumulated the highest number of nucleotide substitutions. The ORF analysis of the four genomes assembled de novo indicated that the number of isolate-specific genes was higher in isolate SD9 (132 genes) than in isolates P37 (24 genes), P47 (16 genes) and P49 (21 genes). CRISPR elements were found in all isolates and SD9 showed differences in the spacer region. Genes related to bacteriophages F116 and H66 were found only in isolate SD9. Genome comparisons indicated that the isolates of ST-1146 are close related, and most genes implicated in pathogenicity are highly conserved, suggesting a genetic potential for infectivity in the environmental isolates similar to the clinical one. Phage-related genes are responsible of the main differences among the genomes of ST-1146 isolates. The role of bacteriophages has to be considered in the adaptation processes of isolates to the host and in microevolution studies.