David K. Jackson
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David K. Jackson.
Nature Genetics | 2006
Florian Eckhardt; Jörn Lewin; Rene Cortese; Vardhman K. Rakyan; John Attwood; Matthias Burger; John Burton; Tony Cox; Rob Davies; Thomas A. Down; Carolina Haefliger; Roger Horton; Kevin L. Howe; David K. Jackson; Jan Kunde; Christoph Koenig; Jennifer Liddle; David Niblett; Thomas Otto; Roger Pettett; Stefanie Seemann; Christian Thompson; Tony West; Jane Rogers; Alex Olek; Kurt Berlin; Stephan Beck
DNA methylation is the most stable type of epigenetic modification modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of six annotation categories showed that evolutionarily conserved regions are the predominant sites for differential DNA methylation and that a core region surrounding the transcriptional start site is an informative surrogate for promoter methylation. We find that 17% of the 873 analyzed genes are differentially methylated in their 5′ UTRs and that about one-third of the differentially methylated 5′ UTRs are inversely correlated with transcription. Despite the fact that our study controlled for factors reported to affect DNA methylation such as sex and age, we did not find any significant attributable effects. Our data suggest DNA methylation to be ontogenetically more stable than previously thought.
Nature | 2011
William C. Skarnes; Barry Rosen; Anthony P. West; Manousos Koutsourakis; Wendy Bushell; Vivek Iyer; Alejandro O. Mujica; Mark G. Thomas; Jennifer Harrow; Tony Cox; David K. Jackson; Jessica Severin; Patrick J. Biggs; Jun Fu; Michael Nefedov; Pieter J. de Jong; A. Francis Stewart; Allan Bradley
Gene targeting in embryonic stem cells has become the principal technology for manipulation of the mouse genome, offering unrivalled accuracy in allele design and access to conditional mutagenesis. To bring these advantages to the wider research community, large-scale mouse knockout programmes are producing a permanent resource of targeted mutations in all protein-coding genes. Here we report the establishment of a high-throughput gene-targeting pipeline for the generation of reporter-tagged, conditional alleles. Computational allele design, 96-well modular vector construction and high-efficiency gene-targeting strategies have been combined to mutate genes on an unprecedented scale. So far, more than 12,000 vectors and 9,000 conditional targeted alleles have been produced in highly germline-competent C57BL/6N embryonic stem cells. High-throughput genome engineering highlighted by this study is broadly applicable to rat and human stem cells and provides a foundation for future genome-wide efforts aimed at deciphering the function of all genes encoded by the mammalian genome.
Nature Biotechnology | 2008
Thomas A. Down; Vardhman K. Rakyan; Daniel J. Turner; Paul Flicek; Heng Li; Eugene Kulesha; Stefan Gräf; Nathan Johnson; Javier Herrero; Eleni M. Tomazou; Natalie P. Thorne; Liselotte Bäckdahl; Marlis Herberth; Kevin L. Howe; David K. Jackson; Marcos M Miretti; John C. Marioni; Ewan Birney; Tim Hubbard; Richard Durbin; Simon Tavaré; Stephan Beck
DNA methylation is an indispensible epigenetic modification required for regulating the expression of mammalian genomes. Immunoprecipitation-based methods for DNA methylome analysis are rapidly shifting the bottleneck in this field from data generation to data analysis, necessitating the development of better analytical tools. In particular, an inability to estimate absolute methylation levels remains a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling. To address this issue, we developed a cross-platform algorithm—Bayesian tool for methylation analysis (Batman)—for analyzing methylated DNA immunoprecipitation (MeDIP) profiles generated using oligonucleotide arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). We developed the latter approach to provide a high-resolution whole-genome DNA methylation profile (DNA methylome) of a mammalian genome. Strong correlation of our data, obtained using mature human spermatozoa, with those obtained using bisulfite sequencing suggest that combining MeDIP-seq or MeDIP-chip with Batman provides a robust, quantitative and cost-effective functional genomic strategy for elucidating the function of DNA methylation.
Genome Research | 2008
Vardhman K. Rakyan; Thomas A. Down; Natalie P. Thorne; Paul Flicek; Eugene Kulesha; Stefan Gräf; Eleni M. Tomazou; Liselotte Bäckdahl; Nathan Johnson; Marlis Herberth; Kevin L. Howe; David K. Jackson; Marcos M Miretti; Heike Fiegler; John C. Marioni; Ewan Birney; Tim Hubbard; Nigel P. Carter; Simon Tavaré; Stephan Beck
We report a novel resource (methylation profiles of DNA, or mPod) for human genome-wide tissue-specific DNA methylation profiles. mPod consists of three fully integrated parts, genome-wide DNA methylation reference profiles of 13 normal somatic tissues, placenta, sperm, and an immortalized cell line, a visualization tool that has been integrated with the Ensembl genome browser and a new algorithm for the analysis of immunoprecipitation-based DNA methylation profiles. We demonstrate the utility of our resource by identifying the first comprehensive genome-wide set of tissue-specific differentially methylated regions (tDMRs) that may play a role in cellular identity and the regulation of tissue-specific genome function. We also discuss the implications of our findings with respect to the regulatory potential of regions with varied CpG density, gene expression, transcription factor motifs, gene ontology, and correlation with other epigenetic marks such as histone modifications.
Bioinformatics | 2007
Robert D. Finn; James Stalker; David K. Jackson; Eugene Kulesha; Jody Clements; Roger Pettett
Summary: The increasing size and complexity of biological databases has led to a growing trend to federate rather than duplicate them. In order to share data between federated databases, protocols for the exchange mechanism must be developed. One such data exchange protocol that is widely used is the Distributed Annotation System (DAS). For example, DAS has enabled small experimental groups to integrate their data into the Ensembl genome browser. We have developed ProServer, a simple, lightweight, Perl-based DAS server that does not depend on a separate HTTP server. The ProServer package is easily extensible, allowing data to be served from almost any underlying data model. Recent additions to the DAS protocol have enabled both structure and alignment (sequence and structural) data to be exchanged. ProServer allows both of these data types to be served. Availability: ProServer can be downloaded from http://www.sanger.ac.uk/proserver/ or CPAN http://search.cpan.org/~rpettett/. Details on the system requirements and installation of ProServer can be found at http://www.sanger.ac.uk/proserver/. Contact: [email protected] Supplementary Materials: DasClientExamples.pdf
BMC Medical Genomics | 2008
Eleni M. Tomazou; Vardhman K. Rakyan; Gregory C. Lefebvre; Robert Andrews; Peter Ellis; David K. Jackson; Cordelia Langford; Matthew D. Francis; Liselotte Bäckdahl; Marcos M Miretti; Penny Coggill; Diego Ottaviani; Denise Sheer; Adele Murrell; Stephan Beck
BackgroundThe major histocompatibility complex (MHC) is essential for human immunity and is highly associated with common diseases, including cancer. While the genetics of the MHC has been studied intensively for many decades, very little is known about the epigenetics of this most polymorphic and disease-associated region of the genome.MethodsTo facilitate comprehensive epigenetic analyses of this region, we have generated a genomic tiling array of 2 Kb resolution covering the entire 4 Mb MHC region. The array has been designed to be compatible with chromatin immunoprecipitation (ChIP), methylated DNA immunoprecipitation (MeDIP), array comparative genomic hybridization (aCGH) and expression profiling, including of non-coding RNAs. The array comprises 7832 features, consisting of two replicates of both forward and reverse strands of MHC amplicons and appropriate controls.ResultsUsing MeDIP, we demonstrate the application of the MHC array for DNA methylation profiling and the identification of tissue-specific differentially methylated regions (tDMRs). Based on the analysis of two tissues and two cell types, we identified 90 tDMRs within the MHC and describe their characterisation.ConclusionA tiling array covering the MHC region was developed and validated. Its successful application for DNA methylation profiling indicates that this array represents a useful tool for molecular analyses of the MHC in the context of medical genomics.
BMC Genomics | 2014
Michael A. Quail; Miriam Smith; David K. Jackson; Steven Leonard; Thomas Skelly; Harold Swerdlow; Yong Gu; Peter Ellis
BackgroundA minor but significant fraction of samples subjected to next-generation sequencing methods are either mixed-up or cross-contaminated. These events can lead to false or inconclusive results. We have therefore developed SASI-Seq; a process whereby a set of uniquely barcoded DNA fragments are added to samples destined for sequencing. From the final sequencing data, one can verify that all the reads derive from the original sample(s) and not from contaminants or other samples.ResultsBy adding a mixture of three uniquely barcoded amplicons, of different sizes spanning the range of insert sizes one would normally use for Illumina sequencing, at a spike-in level of approximately 0.1%, we demonstrate that these fragments remain intimately associated with the sample. They can be detected following even the tightest size selection regimes or exome enrichment and can report the occurrence of sample mix-ups and cross-contamination.As a consequence of this work, we have designed a set of 384 eleven-base Illumina barcode sequences that are at least 5 changes apart from each other, allowing for single-error correction and very low levels of barcode misallocation due to sequencing error.ConclusionSASI-Seq is a simple, inexpensive and flexible tool that enables sample assurance, allows deconvolution of sample mix-ups and reports levels of cross-contamination between samples throughout NGS workflows.
Scientific Reports | 2017
Francesca Giordano; Louise Aigrain; Michael A. Quail; Paul Coupland; James K. Bonfield; Robert Davies; German Tischler; David K. Jackson; Thomas M. Keane; Jing Li; Jia-Xing Yue; Gianni Liti; Richard Durbin; Zemin Ning
Long-read sequencing technologies such as Pacific Biosciences and Oxford Nanopore MinION are capable of producing long sequencing reads with average fragment lengths of over 10,000 base-pairs and maximum lengths reaching 100,000 base- pairs. Compared with short reads, the assemblies obtained from long-read sequencing platforms have much higher contig continuity and genome completeness as long fragments are able to extend paths into problematic or repetitive regions. Many successful assembly applications of the Pacific Biosciences technology have been reported ranging from small bacterial genomes to large plant and animal genomes. Recently, genome assemblies using Oxford Nanopore MinION data have attracted much attention due to the portability and low cost of this novel sequencing instrument. In this paper, we re-sequenced a well characterized genome, the Saccharomyces cerevisiae S288C strain using three different platforms: MinION, PacBio and MiSeq. We present a comprehensive metric comparison of assemblies generated by various pipelines and discuss how the platform associated data characteristics affect the assembly quality. With a given read depth of 31X, the assemblies from both Pacific Biosciences and Oxford Nanopore MinION show excellent continuity and completeness for the 16 nuclear chromosomes, but not for the mitochondrial genome, whose reconstruction still represents a significant challenge.
data integration in the life sciences | 2006
Andreas Prlić; Ewan Birney; Tony Cox; Thomas A. Down; Robert D. Finn; Stefan Gräf; David K. Jackson; Andreas Kähäri; Eugene Kulesha; Roger Pettett; James Smith; Jim Stalker; Tim Hubbard
The Distributed Annotation System (DAS) is a protocol for sharing of biological data which allows for dynamical data integration. It has become widely used in both the genome and protein bioinformatics communities. Here we provide an overview of the available DAS infrastructure and present our latest developments, including a registration server that facilitates service discovery by DAS clients while automatically monitoring service availability. Currently there are 108 registered DAS servers, provided by 24 institutions in 10 countries.
BMC Genomics | 2015
John E. Collins; Neha Wali; Ian Sealy; James A. Morris; Richard J. White; Steven Leonard; David K. Jackson; Matthew C. Jones; Nathalie C. Smerdon; Jorge Zamora; Christopher M. Dooley; Samantha Carruthers; Jeffrey C. Barrett; Derek L. Stemple; Elisabeth M. Busch-Nentwich
BackgroundWe present a genome-wide messenger RNA (mRNA) sequencing technique that converts small amounts of RNA from many samples into molecular phenotypes. It encompasses all steps from sample preparation to sequence analysis and is applicable to baseline profiling or perturbation measurements.ResultsMultiplex sequencing of transcript 3′ ends identifies differential transcript abundance independent of gene annotation. We show that increasing biological replicate number while maintaining the total amount of sequencing identifies more differentially abundant transcripts.ConclusionsThis method can be implemented on polyadenylated RNA from any organism with an annotated reference genome and in any laboratory with access to Illumina sequencing.