Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David K. Ralston is active.

Publication


Featured researches published by David K. Ralston.


Journal of Physical Oceanography | 2008

Subtidal Salinity and Velocity in the Hudson River Estuary: Observations and Modeling

David K. Ralston; W. Rockwell Geyer; James A. Lerczak

A tidally and cross-sectionally averaged model based on the temporal evolution of the quasi-steady Hansen and Rattray equations is applied to simulate the salinity distribution and vertical exchange flow along the Hudson River estuary. The model achieves high skill at hindcasting salinity and residual velocity variation during a 110-day period in 2004 covering a wide range of river discharges and tidal forcing. The approach is based on an existing model framework that has been modified to improve model skill relative to observations. The external forcing has been modified to capture meteorological time-scale variability in salinity, stratification, and residual velocity due to sea level fluctuations at the open boundary and alongestuary wind stress. To reflect changes in vertical mixing due to stratification, the vertical mixing coefficients have been modified to use the bottom boundary layer height rather than the water depth as an effective mixing length scale. The boundary layer parameterization depends on the tidal amplitude and the local baroclinic pressure gradient through the longitudinal Richardson number, and improves the model response to spring–neap variability in tidal amplitude during periods of high river discharge. Finally, steady-state model solutions are evaluated for both the Hudson River and northern San Francisco Bay over a range of forcing conditions. Agreement between the model and scaling of equilibrium salinity intrusions lends confidence that the approach is transferable to other estuaries, despite significant differences in bathymetry. Discrepancies between the model results and observations at high river discharge are indicative of limits at which the formulation begins to fail, and where an alternative approach that captures two-layer dynamics would be more appropriate.


Journal of Physical Oceanography | 2005

The Scaling and Structure of the Estuarine Bottom Boundary Layer

Mark T. Stacey; David K. Ralston

Abstract A two-week dataset from a partially and periodically stratified estuary quantifies variability in the turbulence across the tidal and spring–neap time scales. These observations have been fit with a two-parameter model of the Reynolds stress profile, which produces estimates of the time variation of the bottom boundary layer height and the friction velocity. Conditions at the top of the bottom boundary layer indicate that the dynamics governing the development of the estuarine bottom boundary layer are different on ebb tides than on flood tides. The asymmetry in the flow is explained by consideration of the strain-induced buoyancy flux, which is stabilizing on ebb tides and destabilizing on flood tides. Based on these observations, a scaling approach to estimating estuarine bottom boundary layer parameters (height and friction velocity) is presented, which includes a modified Monin–Obukhov length scale to account for the horizontal buoyancy flux created by the sheared advection. Comparison with t...


Journal of Geophysical Research | 2010

Structure, variability, and salt flux in a strongly forced salt wedge estuary

David K. Ralston; W. Rockwell Geyer; James A. Lerczak

This researchwas funded by National Science Foundation grant OCE‐0452054. Ralston also received partial support from The Penzance Endowed Fund in Support of Assistant Scientists and The John F. and Dorothy H. Magee Fund in Support of Scientific Staff at Woods Hole Oceanographic Institution.


Journal of Physical Oceanography | 2009

The Temporal Response of the Length of a Partially Stratified Estuary to Changes in River Flow and Tidal Amplitude

James A. Lerczak; W. Rockwell Geyer; David K. Ralston

The temporal response of the length of a partially-mixed estuary to changes in freshwater discharge, Qf , and tidal amplitude, UT , is studied using a 108 day time series collected along the length of the Hudson River estuary in the spring and summer of 2004 and a long-term (13.4 year) record of Qf , UT , and near-surface salinity. When Qf was moderately high, the tidally-averaged length of the estuary, L5, here defined as the distance from the mouth to the up-estuary location where the vertically-averaged salinity is five psu, fluctuated by more than 47 km over the spring-neap cycle, ranging from 28 km to >75 km. During low flow periods, L5 varied very little over the spring-neap cycle and approached a steady length. The response is quantified and compared to predictions of a linearized model derived from the global estuarine salt balance. The model is forced by fluctuations in Qf and UT relative to average discharge, Qo, and tidal amplitude, UTo, and predicts the linear response time scale, τ, and the steady-state length, Lo, for average forcing. Two vertical mixing schemes are considered, in which a) mixing is proportional to UT and b) dependence of mixing on stratification is also parameterized. Based on least-squares fits between L5 and estuary length predicted by the model, estimated τ varied by an order of magnitude from a period of high average discharge (Qo = 750 m3s-1, τ = 4.2 days) to a period of low discharge (Qo = 170 m3s-1, τ = 40.4 days). Over the range of observed discharge, Lo ∝ Qo-0.30±0.03, consistent with the theoretical scaling for an estuary whose landward salt flux is driven by vertical estuarine exchange circulation. Estimated τ was proportional to the discharge advection time scale (LoA/Qo, where A is the cross-sectional area of the estuary). However, τ was three to four times larger than the theoretical prediction. The model with stratification dependent mixing predicted variations in L5 with higher skill than the model with mixing proportional to UT . This model provides insight into the time dependent response of a partially-stratified estuary to changes in forcing and explains the strong dependence of the amplitude of the spring-neap response on freshwater discharge. However, the utility of the linear model is limited because it assumes a uniform channel and because the underlying dynamics are nonlinear and the forcing, Qf and UT , can undergo large amplitude variations. River discharge, in particular, can vary by over an order of magnitude over timescales comparable to or shorter than the response timescale of the estuary.


PLOS ONE | 2011

Climate change, precipitation and impacts on an estuarine refuge from disease.

Jeffrey S. Levinton; Michael H. Doall; David K. Ralston; Adam Starke; Bassem Allam

Background Oysters play important roles in estuarine ecosystems but have suffered recently due to overfishing, pollution, and habitat loss. A tradeoff between growth rate and disease prevalence as a function of salinity makes the estuarine salinity transition of special concern for oyster survival and restoration. Estuarine salinity varies with discharge, so increases or decreases in precipitation with climate change may shift regions of low salinity and disease refuge away from optimal oyster bottom habitat, negatively impacting reproduction and survival. Temperature is an additional factor for oyster survival, and recent temperature increases have increased vulnerability to disease in higher salinity regions. Methodology/Principal Findings We examined growth, reproduction, and survival of oysters in the New York Harbor-Hudson River region, focusing on a low-salinity refuge in the estuary. Observations were during two years when rainfall was above average and comparable to projected future increases in precipitation in the region and a past period of about 15 years with high precipitation. We found a clear tradeoff between oyster growth and vulnerability to disease. Oysters survived well when exposed to intermediate salinities during two summers (2008, 2010) with moderate discharge conditions. However, increased precipitation and discharge in 2009 reduced salinities in the region with suitable benthic habitat, greatly increasing oyster mortality. To evaluate the estuarine conditions over longer periods, we applied a numerical model of the Hudson to simulate salinities over the past century. Model results suggest that much of the region with suitable benthic habitat that historically had been a low salinity refuge region may be vulnerable to higher mortality under projected increases in precipitation and discharge. Conclusions/Significance Predicted increases in precipitation in the northeastern United States due to climate change may lower salinities past important thresholds for oyster survival in estuarine regions with appropriate substrate, potentially disrupting metapopulation dynamics and impeding oyster restoration efforts, especially in the Hudson estuary where a large basin constitutes an excellent refuge from disease.


Journal of Physical Oceanography | 2012

Estuarine Exchange Flow Quantified with Isohaline Coordinates: Contrasting Long and Short Estuaries

Shih-Nan Chen; W. Rockwell Geyer; David K. Ralston; James A. Lerczak

AbstractIsohaline coordinate analysis is used to compare the exchange flow in two contrasting estuaries, the long (with respect to tidal excursion) Hudson River and the short Merrimack River, using validated numerical models. The isohaline analysis averages fluxes in salinity space rather than in physical space, yielding the isohaline exchange flow that incorporates both subtidal and tidal fluxes and precisely satisfies the Knudsen relation. The isohaline analysis can be consistently applied to both subtidally and tidally dominated estuaries. In the Hudson, the isohaline exchange flow is similar to results from the Eulerian analysis, and the conventional estuarine theory can be used to quantify the salt transport based on scaling with the baroclinic pressure gradient. In the Merrimack, the isohaline exchange flow is much larger than the Eulerian quantity, indicating the dominance of tidal salt flux. The exchange flow does not scale with the baroclinic pressure gradient but rather with tidal volume flux. T...


Limnology and Oceanography | 2015

Rapid growth and concerted sexual transitions by a bloom of the harmful dinoflagellate Alexandrium fundyense (Dinophyceae)

Michael L. Brosnahan; Lourdes Velo‐Suárez; David K. Ralston; Sophia E. Fox; Taylor R. Sehein; Alexi Shalapyonok; Heidi M. Sosik; Robert J. Olson; Donald M. Anderson

Abstract Transitions between life cycle stages by the harmful dinoflagellate Alexandrium fundyense are critical for the initiation and termination of its blooms. To quantify these transitions in a single population, an Imaging FlowCytobot (IFCB), was deployed in Salt Pond (Eastham, Massachusetts), a small, tidally flushed kettle pond that hosts near annual, localized A. fundyense blooms. Machine‐based image classifiers differentiating A. fundyense life cycle stages were developed and results were compared to manually corrected IFCB samples, manual microscopy‐based estimates of A. fundyense abundance, previously published data describing prevalence of the parasite Amoebophrya, and a continuous culture of A. fundyense infected with Amoebophrya. In Salt Pond, a development phase of sustained vegetative division lasted approximately 3 weeks and was followed by a rapid and near complete conversion to small, gamete cells. The gametic period (∼3 d) coincided with a spike in the frequency of fusing gametes (up to 5% of A. fundyense images) and was followed by a zygotic phase (∼4 d) during which cell sizes returned to their normal range but cell division and diel vertical migration ceased. Cell division during bloom development was strongly phased, enabling estimation of daily rates of division, which were more than twice those predicted from batch cultures grown at similar temperatures in replete medium. Data from the Salt Pond deployment provide the first continuous record of an A. fundyense population through its complete bloom cycle and demonstrate growth and sexual induction rates much higher than are typically observed in culture.


Reference Module in Earth Systems and Environmental Sciences#R##N#Treatise on Estuarine and Coastal Science | 2011

The Dynamics of Strongly Stratified Estuaries

W.R. Geyer; David K. Ralston

This chapter examines the dynamics of strongly stratified estuaries by addressing the parameters that lead to strong stratification and by examining the dynamics of different types of strongly stratified estuaries, notably salt wedge estuaries and fjords. Stratification is shown to be determined by the balance between the stratifying tendency of the estuarine circulation and mixing by the tides. Several parametrizations are presented that can be used to estimate the strength of estuarine stratification. The dynamics of highly stratified estuaries are best expressed using the two-layer equations of motion, which are presented in detail in this chapter. The chapter includes a brief discussion of two-layer hydraulic phenomena such as hydraulic transitions, subcritical and supercritical flow. Frictional two-layer processes are discussed both in context with salt wedges and fjords. Discussion of fjord dynamics includes Knudsen’s relation expressing the relationship between the strength of the exchange flow, the freshwater inflow, and the salinity difference between the upper and lower layers. Fjord mixing and the concept of overmixing are also discussed.


Journal of Physical Oceanography | 2016

Stratified Turbulence and Mixing Efficiency in a Salt Wedge Estuary

Rusty C. Holleman; W.R. Geyer; David K. Ralston

AbstractHigh-resolution observations of velocity, salinity, and turbulence quantities were collected in a salt wedge estuary to quantify the efficiency of stratified mixing in a high-energy environment. During the ebb tide, a midwater column layer of strong shear and stratification developed, exhibiting near-critical gradient Richardson numbers and turbulent kinetic energy (TKE) dissipation rates greater than 10−4 m2 s−3, based on inertial subrange spectra. Collocated estimates of scalar variance dissipation from microconductivity sensors were used to estimate buoyancy flux and the flux Richardson number Rif. The majority of the samples were outside the boundary layer, based on the ratio of Ozmidov and boundary length scales, and had a mean Rif = 0.23 ± 0.01 (dissipation flux coefficient Γ = 0.30 ± 0.02) and a median gradient Richardson number Rig = 0.25. The boundary-influenced subset of the data had decreased efficiency, with Rif = 0.17 ± 0.02 (Γ = 0.20 ± 0.03) and median Rig = 0.16. The relationship be...


Estuaries and Coasts | 2016

Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

Neil K. Ganju; Mark J. Brush; Brenda Rashleigh; Alfredo L. Aretxabaleta; Pilar del Barrio; Jason S. Grear; Lora A. Harris; Samuel J. Lake; Grant McCardell; James O’Donnell; David K. Ralston; Richard P. Signell; Jeremy M. Testa; Jamie M.P. Vaudrey

Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.

Collaboration


Dive into the David K. Ralston's collaboration.

Top Co-Authors

Avatar

W. Rockwell Geyer

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald M. Anderson

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark T. Stacey

University of California

View shared research outputs
Top Co-Authors

Avatar

John C. Warner

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Michael L. Brosnahan

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Brian Yellen

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Britt Raubenheimer

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Geoffrey W. Cowles

University of Massachusetts Dartmouth

View shared research outputs
Researchain Logo
Decentralizing Knowledge